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Goals

Bernhard Keller and Sarah Scherotzke, Graded quiver varieties and
derived categories, arXiv:1303.2318v2:

1. connect Db(kQ) to a moduli variety M0(w);

2. describe the moduli variety in terms of Db(kQ) and vice versa.

My feeble goal:

3. generalise Db(kQ) to a derived moduli stack RPerfQ ;

4. describe the derived moduli stack using the moduli variety.
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Context

It generalises

1. Hiraku Nakajima, Quiver varieties and finite-dimensional
representations of quantum affine algebras,
arXiv:math/9912158

2. Hiraku Nakajima, Quiver varieties and cluster algebras,
arXiv:0905.0002v5

3. Yoshiyuki Kimura and Fan Qin, Graded quiver varieties,
quantum cluster algebras and dual canonical bases,
arXiv:1205.2066v2

4. Bernard Leclerc and Pierre-Guy Plamondon, Nakajima varieties
and repetitive algebras, 1208.3910v2
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Conventions

1. k algebraically closed

2. Q a finite acyclic quiver

3. take Q connected for ease of statements

4/30



A reminder on derived categories

Construction

1. A a ring;

2. Mod-A abelian category of A-modules;

3. Ch(Mod-A) abelian category of chain complexes of A-modules;

(4.) K(Mod-A) triangulated category of chain complexes up to
homotopy;

5. D(Mod-A) triangulated category of chain complexes with
quasi-isomorphisms inverted.

Motivation

Natural location to do homological algebra.
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A reminder on moduli spaces

Philosophy

A moduli “space” is an geometric object parametrising “families of
objects”.

I A “space” could be: topological space, manifold, variety,
scheme, stack, derived stack, . . .

I A “family of objects” could be: curves, algebra structures,
modules, sheaves, subvarieties in a given variety, . . . Then the
geometric structure of the space determines which objects
“look a like”.

1. moduli space of curves (= Riemann surfaces) Mg ,
dimMg = 3g − 3

2. moduli space of algebra structures on finite-dimensional
vectorspace Algr 6/30



Repetition quivers

We need a (technical) construction. . .

Definition

The repetition quiver ZQ has as vertices

Q0 × Z = {(i , p) | i ∈ Q0, p ∈ Z}

and edges⋃
α : i→j

{(α, p) : (i , p)→ (j , p);σ(α, p) : (j , p − 1)→ (i , p)} .
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Translations in repetition quivers

1. in the definition: σ : ZQ1 → ZQ1;

2. translation to the left: τ , both on ZQ0 and ZQ1;

3. we have σ2 = τ .
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Examples of repetition quivers
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βτ(β)
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ZD4 . . . . . .
σ(β)
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Framed quivers

Definition

The framed quiver Q̃ of Q has vertices Q0 and Q ′
0 = {i ′ | i ∈ Q0},

and edges Q1 and {i → i ′ | i ∈ Q0}. The vertices i ′ are the frozen
vertices.
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Examples of framed quivers
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Mesh categories

Definition

The mesh category k(ZQ) is the k-linear category with
Obj(k(ZQ)) = ZQ0 and

Homk(ZQ)(a, b) = 〈paths from a to b in ZQ〉/(urxv | x ∈ ZQ0)

where rx is the mesh relator associated to x , given by

rx =
∑

β : y→x

σ(β)β :

y1

τ(x)
... x

yn

β1σ(β1)

σ(βn) βn
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Remarks on mesh categories

This construction finds its origins in Auslander-Reiten theory.

Example

In the mesh category k(A2) all paths of length 2 or more are
identified with 0.

More interesting examples: see next, when we’ve introduced
Nakajima categories.
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Regular Nakajima categories

Definition

The regular Nakajima category RQ (or just R) is the mesh category
on the framed quiver, where we only impose the mesh relators on
the non-frozen vertices.
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Examples of regular Nakajima categories

. . .RA3
. . .

. . .RD4
. . .
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Singular Nakajima categories

Definition

The singular Nakajima category SQ (or just S) is the full
subcategory of the regular Nakajima category R on the frozen
vertices.

We have regular versus singular because of the related moduli
varieties: one is regular, the other can be singular.
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Examples of singular Nakajima categories

These categories become really hard to draw, see Keller–Scherotzke
for the case D4 which is next to impossible to reproduce.
The singular Nakajima category for A2:
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with relations

1. ab − ba

2. a3 − cb
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Graded affine quiver varieties

Definition

The graded affine quiver variety M0(w) for a finitely supported
dimension vector w : Obj(S)→ N is the variety of S-modules M,
such that M(x) ∼= kw(x).

M0(w) ∼=
∏

x ,y∈Obj(S)

Homk

(
HomS(x , y), kw(x)w(y)

)
/I

where I is an ideal of relations: a module M is described by

1. images of the morphisms in S;

2. relations that hold in S.

Hence, M0(w) Zariski closed subset of an affine space!
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Structure of M0(w)

Understanding structure of S implies understanding M0(w). We
can describe the quiver of S, with nodes Zσ(Q0).

Theorem (Keller–Scherotzke, 2013)

We have

#{σ(y)→ σ(x)} = dim Ext1S(Sσ(x),Sσ(y))

and

#{relations for σ(y) to σ(x)} = dim Ext2S(Sσ(x), Sσ(y)).
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Relating Db(kQ) to k(ZQ)

Theorem (Happel, 1987)

There exists a canonical fully faithful functor

H: k(ZQ)→ ind(Db(kQ))

such that the vertex (i , 0) is sent to the indecomposable projective
module Pi , for i ∈ Q0.
It is moreover an equivalence if and only if Q is a Dynkin quiver.

Hence we get a relationship between the repetition quiver and the
derived category!
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An isomorphism of Ext’s

Theorem

Let p ≥ 1. For all x , y ∈ ZQ0 we have

ExtpS(Sσ(x),Sσ(y)) ∼= HomDb(kQ)(H(x),Σp H(x)).

Moreover, if Q is not Dynkin these are zero for p ≥ 2.

Applying Keller–Scherotzke’s result:

Corollary

For Q not Dynkin there are no relations! We have M0(w)
isomorphic to affine space.
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Stability and costability

Definition

An R-module is stable if for all x ∈ ZQ0 non-frozen we have

HomR(Sx ,M) = 0.

Interpretation

M does not contain a non-zero submodule supported only on
non-frozen vertices.

Dual definition for costable: HomR(M, Sx) = 0.

Interpretation

M does not have a non-zero quotient supported only on non-frozen
vertices.
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Dimension vectors

We’ll denote (v ,w)

v : Obj(R) \ Obj(S)→ N
w : Obj(S)→ N

dimension vectors for the regular Nakajima category.
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A related moduli variety

Definition

The variety M̃(v ,w) is a moduli space for the R-modules M such
that

1. M is stable;

2. M(x) ∼= kv(x);

3. M(σ(x)) ∼= kw(σ(x)).

There is moreover a (free) base change action by the group

Gv :=
∏

x∈Obj(R)\Obj(S)

GLv(x)(k)

Only on the non-frozen vertices!
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Graded quiver varieties

Definition

The graded quiver variety M(v ,w) is the quotient M̃(v ,w)/Gv .

Using GIT this becomes a smooth quasi-projective variety, and the
restriction res : Mod-R → Mod-S becomes a projection map

π : M(v ,w)→M0(w)

which is proper (“=” inverse images of compacts are compact).
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Stratification

Goal

A stratification of M0(w).

Definition

Denote by Mreg(v ,w) the open subset of M(v ,w) formed by
isomorphism classes of R-modules which are also costable.

By varying the vector v (w is fixed) we can stratify M0(w) by the
images of the non-empty Mreg(v ,w), and each of these is
isomorphic to its image in M0(w).
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Statement

Theorem (Keller–Scherotzke, 2013)

There is a canonical δ-functor

Φ: mod-S → Db(kQ)

such that

1. the simple module Sσ(x) for x ∈ ZQ0 is sent to H(x);

2. M1,M2 ∈M0(w) lie in the same stratum if and only
if Φ(M1) ∼= Φ(M2) in Db(kQ).
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Applications

1. generalising the following result: Desingularization of quiver
Grassmannians for Dynkin quivers, Giovanni Cerulli Irelli,
Evgeny Feigin and Markus Reineke, arXiv:1209.3960

2. link with derived algebraic geometry and moduli spaces of
derived categories: Moduli of objects in dg categories, Bertrand
Toën and Michel Vaquié, arXiv:math/0503269
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Derived moduli stacks

i (
⊔

w M0(w)) RPerfS

RPerfQ

All of these objects are “derived”.

Questions

1. What are the geometric properties of these morphisms?

2. Do we obtain a smooth atlas for the moduli stacks?

3. Can we strengthen the results on the stratification?

4. Do these stacks have interesting intrinsic structure?
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Corollary in NCAG

Claim

The derived moduli stack of vector bundles on a noncommutative
curve is [−1, 0]-truncated, just like the commutative case.

Context

1. non-derived moduli stack VectC of vector bundles on a
commutative curve C is smooth (no need for derivedness);

2. non-derived moduli stack VectS of vector bundles on a
commutative surface S is singular (but derived smooth);

3. derived moduli stack of vector bundles (associated to Q
non-Dynkin) on a noncommutative curve is as nice as the
commutative counterpart.
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