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Abstract

The goal is to outline some ideas in the construction [EGA IV4, §16.5.14] and

the proof of [EGA IV4, proposition 16.5.7]. Before doing so we also present some

properties of formally smooth, formally unrami�ed and formally étale morphisms.

We also explain how the �nite presentation in [EGA IV4, corollaire 16.5.8]

induces a mistake in the proof of [EGA IV4, proposition 17.1.6] and how we can

�x it, which is something we learnt from MO10741.
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1 Introduction

Recall that the following de�nitions [EGA IV4, dé�nition 17.1.1].

De�nition 1. Let f : X → Y be a morphism of schemes. We say that it is formally
smooth (resp. formally unrami�ed, resp. formally étale) if

1. for every a�ne scheme T ;

2. for every closed subscheme i : T0 ↪→ T de�ned by a nilpotent ideal J of OT (i.e.

a nilpotent ideal I of A such that T = SpecA);

3. for every morphism д : T → Y ;

the morphism

(1) HomY (T ,X ) → HomY (T0,X )

obtained from T0 → T is surjective (resp. injective, resp. bijective).

In other words, there exists (resp. there exists at most one, resp. there exists exactly

one) lifting in the diagram

(2)

T0 X

T Y

u0

i f

д

u

for a morphism u0 : T0 → X making it commutative.

Remark 2. In section 4 it is explained that these conditions are local on the source

or target, in particular one can check things on a�ne open covers of X or Y . On the

other hand, in the de�nition we require T be a�ne.

The goal of this note is to:

1. explain why we get, in complete generality, a torsor underHomOT
0

(u∗
0
(Ω1

X /Y ),J)
for the set of liftings (as a sheaf on T ), if we drop the condition that T be a�ne

in (2);

2. explain what the role of T being a�ne is in the de�nition of formal smoothness

(resp. formal unrami�edness, resp. formal étaleness);

3. explain why we can check things on an a�ne open cover of X and Y .

In section 2 we explain when this condition can be dropped, when it can’t, and what it

means to and why we get a “(pseudo)torsor under HomOT
0

(u∗
0
(Ω1

X /Y ),J)”. From now

on we will denote this sheaf by G.

Remark 3. One can see that the condition that J be nilpotent can be replaced by it

being square-zero, by taking a chain of square-zero closed immersions, as in [EGA IV4,

remarques 17.1.2(ii)].
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2 Torsors and all that

We now redo the discussion of [EGA IV4, §16.5.14]. We use the same notation as

in (2), but now let T be any scheme, not just an a�ne scheme, and we don’t put any

assumptions on f . This is because the main result of this section doesn’t care about

formal smoothness (which is only introduced in [EGA IV4, §17] anyway).

Remark 4. I.e. we are given the morphisms f : X → Y , д : T → Y , a closed sub-

scheme i : T0 ↪→ T given by a square-zero ideal ideal J ofOT and a morphismu0 : T0 → X
making the square (2) commutative. We then ask ourselves whether there exists a

lift u : T → X .

2.1 De�nition

Let’s recall the de�nition of a (pseudo)torsor, because if you are like me you have never

actually used it up to now.

De�nition 5. Let X be a topological space. Let G be a sheaf of groups
1

on X . A

pseudotorsor under G is a sheaf of sets F on X together with an action G × F → F such

that for an U ⊆ X open we have

1. either F(U ) = ∅;

2. or G(U ) × F(U ) → F(U ) transitive.

If there exists a covering X =
⋃

i ∈I Ui such that F(Ui ) , ∅ for all i ∈ I then F is called

a torsor under G.

The best intuition for a torsor that I’ve seen is the following quote, from John Baez:

A torsor is like a group that has forgotten its identity.

So for any G we always get the trivial torsor, which is G itself.

2.2 The sheaf of sets

Now that we know what a (pseudo)torsor is, we can introduce the sheaf of sets that

we will use. Observe that |T | = |T0 |, the closed immersion de�ned by J only changes

the structure sheaf and not the underlying topological spaces.

De�nition 6. Let P be the sheaf of sets on T de�ned by

(3) Γ(U ,P) B
{
u : U → X | u0 |U0

= u ◦ (j |U0
),U0 B i−1 (U )

}

for any open U of T .

That it is a sheaf follows from the fact that morphisms of schemes are de�ned locally.

It is also a sheaf on T0, as the underlying topological spaces agree.

The sheaf of groups under which it will be a torsor is

(4) G B HomOT
0

(u∗
0
(Ω1

X /Y ),J).

1
Not necessarily commutative, but in our case it will be.
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This is a OT0
-module.

We are trying to understand when there is a morphism u : T → X such that u0 = u ◦ i ,
in other words we wish to understand [EGA IV4, proposition 16.5.17], whose statement

is repeated in proposition 9. So we have to construct the desired action of G on P. We

do this a�ne-locally.

2.3 The a�ne situation

We �rst give (and prove) the a�ne situation, it corresponds to [EGA IV1, corol-

lary 0IV.20.1.3]. The proof is a straight-forward check, but it’s not something that

I can check in all gory details on the spot so I decided to write it down. For the

de�nition of DerA (B, I ) one is referred to loc. cit.

Lemma 7. Let A be a ring. Let p : E → C and u : B → C be morphisms of A-algebras,

such that I B ker(p) has I 2 = 0. Then the set of morphisms v : B → E of A-algebras

such that u = p ◦v is either empty or a torsor for DerA (B, I ).

Proof. I.e. the situation asks for liftings as in the diagram

(5)

0

I

E

B C

0

p

u

v

.

We have to prove that if we take two liftingsv1 andv2 their di�erence is anA-derivation

of B into I , and vice versa that if we take a lifting v and a derivation Θ their sum is

another lifting in the diagram.

1. Let v1 and v2 be two liftings for (5). Then we get θ B v1 − v2 : B → E. But

these maps are liftings of u, hence they agree when composed with p, so θ is

actually a map B → I (considered as A-modules). We just have to check that it

is a A-derivation of B into I . Everything except the Leibniz rule is immediate.

Observe that for any b,b ′ ∈ B

(6) v1 (bb
′) −v1 (b)v1 (b

′) = v2 (bb
′) −v2 (b)v2 (b

′)

as the vi are originally morphisms of A-algebras and both sides equal 0. Rear-

ranging we get

(7) v1 (bb
′) −v2 (bb

′) = v1 (b)v1 (b
′) −v2 (b)v2 (b

′)
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where the left-hand side equalsΘ(bb ′). To show that the right-hand side equalsbΘ(b ′)+b ′Θ(b),
observe that we can rewrite

(8)

bΘ(b ′) + b ′Θ(b)

= b (v1 (b
′) −v2 (b

′)) + b ′(v1 (b) −v2 (b
′))

= v1 (b)
(
v1 (b

′) −v2 (b
′)
)
+v2 (b

′) (v1 (b) −v2 (b))

= v1 (b)v1 (b
′) −v2 (b)v2 (b

′)

where we have used that E has two B-module structures via v1 and v2 that agree

for elements of I .

2. Conversely, let v1 be a lifting for (5) and Θ an A-derivation of B into I . Then we

get v2 B v1 + Θ : B → E. Everything except multiplicativity is immediate (use

that Θ sends the image of A under the structure map A→ B to zero). Observe

that for b,b ′ ∈ B we have

(9)

v2 (bb
′) −v2 (b)v2 (b

′)

= v1 (bb
′) + Θ(bb ′) − (v1 (b) + Θ(b)) (v1 (b

′) + Θ(b ′))

= v1 (bb) −v1 (b)v1 (b
′) + Θ(bb ′) −v1 (b)Θ(b

′) −v1 (b
′)Θ(b) − Θ(b)Θ(b ′)

= 0

proving that the map v2 is multiplicative.

One also has to check that everything restricts nicely, which is done in [EGA IV1,

§0IV.20.5] (see also remark 8). �

2.4 The global situation

Now consider the commutative diagram (2), with assumptions as in remark 4. Consider

an a�ne open U = SpecC of T , and denote U0 B i−1 (U ) = SpecC/I which is again

a�ne, where I = Γ(U ,J) is a square-zero ideal of C .

Assume that U is su�ciently small such that

1. u0 (U0) ⊆ V = SpecB ⊆ X ;

2. д(U ) = f (u0 (U0)) ⊆W = SpecA ⊆ Y .

This reduces the global situation to the situation discussed in section 2.3. By lemma 7

we know that P(U0) is a torsor for DerA (B, I ).

We have to check that this action is independent of our choices, but as indicated in the

proof of lemma 7 we are good.

Remark 8. If we denote ψ the map B → C/I obtained from u0 |U0 : U0 → V , then I
comes equipped with the structure of a B-module. By the universal property of Ω1

B/A
this induces an isomorphism

(10) HomB (Ω
1

B/A, I ) → DerA (B, I )

by precomposing v : Ω1

B/A → I with dB/A. This is either well-known, or you can read

[EGA IV1, theorem 0IV.20.4.8.2(ii)].

5



Moreover, as I is square-zero, hence it comes also equipped with the structure of

a C/I -module, every B-morphism v : Ω1

B/A → I can be considered as a C/I -mor-

phism Ω1

B/A ⊗B (C/I ) → I . But this globalises (as J is square-zero), and we have that

the sheaf G as introduced in (2) can be considered as a quasicoherent OY0
-module, such

that

(11) DerA (B, I ) � Γ(U0,G).

The previous discussion proves the following result.

Proposition 9. Let f : X → Y and д : T → Y be morphisms. Let i : T0 ↪→ T be a closed

subscheme de�ned by a quasicoherent ideal sheaf J such that J2 = 0.

Let u0 : T0 → X be any morphism making (2) commute. Then there exists on P the

structure of a pseudotorsor under the OT0
-module G B HomOT

0

(u∗
0
(Ω1

X /Y ),J).
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3 Torsors in the formally smooth case

We can now tie together the discussion on (pseudo)torsors and the notion of for-

mally smooth morphisms. Recall that for a sheaf of groups as in the de�nition of a

(pseudo)torsor, the set of isomorphism classes of torsors under G is given by H
1 (X ,G),

whose correspondence can be found in e.g. [EGA IV4, §16.5.15].

Remark 10. One concludes that, in the situation of remark 4, and moreover f : X → Y
formally smooth, one has that the (pseudo)torsor obtained in proposition 9 is actually

a torsor, because we take for the open cover any a�ne open cover of T .

I.e. we have that there are always local liftings on T , but they don’t necessarily glue

together to a global lifting T → X .

Remark 11. Observe that the notion of torsors for formally smooth morphisms is

important for the in�nitesimal lifting criterion, i.e. the purely functorial description

of smooth morphisms as morphisms which are formally smooth and locally of �nite

presentation. Its proof, one uses that torsors on X under some group G are classi�ed

by H
1 (X ,G). One then wishes to show that under our conditions the G of our choice is

a quasi-coherent module, so it doesn’t have cohomology on a�ne schemes.

Remark 12. As explained after the de�nition of formal smoothness in [Stacks, tag 02GZ]

we can drop the condition that T be a�ne in the de�nition of formal étaleness and

formal unrami�edness, as done in [Stacks, tags 04F1, 04FD].
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4 Being formally smooth is local on the source or
target

Recall [EGA IV4, proposition 17.1.6], which goes as follows.

Proposition 13. Let f : X → Y be a morphism of schemes. Then

1. Let (Uα )α be an open cover of X , and denote i : Uα ↪→ X the canonical injection.

Then f is formally smooth (resp. formally unrami�ed, resp. formally étale) if

and only if each of the f ◦ iα is formally smooth (resp. formally unrami�ed, resp.

formally étale).

2. Let (Vλ )λ be an open cover of Y .

Then f is formally smooth (resp. formally unrami�ed, resp. formally étale) if and

only of each of the f |f −1 (Vλ ) : f −1 (Vλ ) → Vλ is formally smooth (resp. formally

unrami�ed, resp. formally étale).

To summarise: being formally smooth (resp. formally unrami�ed, resp. formally étale)

1. is local on the source;

2. is local on the target.

But observe that the proof, as written in loc. cit. is actually wrong. This is explained in

MO10731. This also a�ects the discussion in remark 11 as the proof goes along the

same lines, but the Stacks project incorporates the results of Raynaud–Gruson so it

should be �ne.

The references to these results in the Stacks project are given in table 1. Unfortunately

they are only stated in the required form for algebraic spaces, but one can replace étale

by Zariski open immersion to get the desired statement.

local on the source and target

formally smooth tag 061K

formally unrami�ed tag 04G8

formally étale tag 04GD

Table 1: Localness of formal smoothness (resp. formal unrami�edness, resp. formal

étaleness) in the Stacks project
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