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Abstract

These are the notes for my talk in the ANAGRAMS seminar on spectral
sequences, November 27, 2014. The goal is to give some examples of spectral
sequences, and some example computations, in the context of algebra and
algebraic geometry. It is by no means exhaustive, written down in full generality,
or other things you might care about.
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1 Grothendieck spectral sequence

Slogan The chain rule for derived functors: how to express Rp+q(G ◦ F) in terms
of RpG and Rq F .

Theorem 1. Let A,B and C be abelian categories, such that A and B have enough
injectives and C is cocomplete (i.e. all colimits exist, or equivalently all coproducts
and fibered coproducts exist). Consider the diagram

(1)
A B

C

F

G◦F
G

where F and G are additive, and F sends injective objects to G-acyclic objects. Then
there exists a spectral sequence

(2) Ep,q
2 = RpG (Rq F(A))⇒ Rp+q(G ◦ F)(A).

Remark 2. The Grothendieck spectral sequence is a tool for actually computing some-
thing for the composition of true derived functors, where we have R(G◦F)∼= RG◦RF .
The latter approach is the best choice when trying to prove general statements, but
often hands-on computations with derived functors boil down to spectral sequences.
Of course, when the Grothendieck spectral sequence was introduced in [2] the notion
of derived categories wasn’t around yet, so it is only in hindsight that one can say
this.

Observe that the Grothendieck spectral sequence covers many interesting instances
of spectral sequences in day-to-day use (but not all!). In these notes we will cover
the following instances of Grothendieck spectral sequences:

1. Čech-to-derived spectral sequence, section 2;

2. Tor and Ext spectral sequences, section 4;

3. Leray spectral sequence, section 3;

but many other exist.
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2 The Čech-to-derived functor spectral sequence

Slogan Compute sheaf cohomology on X via appropriately chosen covers of X .

Let X be a topological space. Let F be a sheaf on X . Let U = (Ui)i∈I be an open cover
of X . Denote by Hq(X ,F) the presheaf which takes an open set U ⊆ X to Hq(U ,F).
Denote for any presheaf (!) P by Ȟp(U,P) the p-th Čech cohomology of P with
respect to U, i.e. we consider the complex

(3) Č•(U,P) :=
∏

i0∈I

P(Ui0)→
∏

i0<i1∈I

P(Ui0,i1)→ . . .

by choosing some ordering for I , and where Ui0,...,ik
:= Ui0 ∩ . . .∩ Uik . Then

(4) Ep,q
2 = Ȟp (U,Hq(X ,F))⇒ Hp+q(X ,F).

This is a Grothendieck spectral sequence, by taking (let’s switch to the context of
ringed spaces)

categories A= OX -Mod, B= OX -PMod and C= OX (X )-Mod;

functors F = i and G = Ȟ0(U,−).

For more information and context, see [SP, tag 006P], [SP, tag 01EO].
Example 3 (Mayer–Vietoris). If U = {U , V} consists of two open subsets, the spectral
sequence degenerates at the E2-page because there are only two columns and yields
the long exact sequence

(5) 0→ H0(X ,F)→ H0(U ,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X ,F)→ . . .

See also [1, §II.5.6], [SP, tag 01E9].
Example 4 (Affine open cover of a scheme). Let X be a quasicompact and separated
scheme. Let U = (Ui)i∈I be an finite affine open cover of X . Let F be a quasico-
herent sheaf on X . By the assumptions on X we have that Ui0,...,ik is again affine.
By a theorem of Serre we have that affine schemes have no higher cohomology,
hence Hi(Ui0,...,ik ,F) = 0 for i ≥ 1.

But this means that the spectral sequence (4) degenerates at the E2 page be-
cause Ep,q

2 = Ȟp(U,Hq(F)) is zero if q 6= 0. Hence we get that

(6) Ȟp(U,F)∼= Hp(X ,F).

Observe the example certainly isn’t phrased in its full generality for the sake of clarity.
For more generality one can look at e.g. [SP, tag 01ET].

The upshot is that Čech cohomology can be seen as an algorithm to compute abstractly
defined sheaf cohomology. The usual definition of Čech cohomology requires taking
a direct limit over all covers, but in the situation described here it suffices to look at
a particular cover.
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3 Leray spectral sequence

Slogan Compute sheaf cohomology on X via sheaf cohomology on Y .

Let f : X → Y be a continuous map between topological spaces. Let F be a sheaf of
abelian groups on X . Then

(7) Ep,q
2 = Hp (Y, Rq f∗(F))⇒ Hp+q(X ,F).

This is a Grothendieck spectral sequence, by taking

categories A= Ab(X ), B= Ab(Y ) and C= Abgp;

functors F = f∗ and G = Γ (X ,−).

For more information and context, see [SP, tag 01EY]. Or search for “Leray” in the
Stacks project, you’ll get some interesting applications but I won’t delve into them
here.
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4 Base change for Tor and Ext spectral sequence

Slogan Approximate Tor or Ext on B via Tor or Ext on A

Let f : A→ B be a morphism of rings. Let M be an A-module, N be a B-module. Then
we have spectral sequences

(8) E2
p,q = TorB

p

�

TorA
q(M , B), N

�

⇒ TorA
p+q(M , N)

and

(9) Ep,q
2 = Extp

B

�

M , Extq
A(B, N)

�

⇒ Extp+q
A (M , N).

For a reference, see [4, §5.6 and §5.8] (watch out for the typos) or [SP, tag 0620].

These are again examples of Grothendieck spectral sequences, by taking

categories A=Mod/A, B=Mod/B and C= Abgp,

functors F = −⊗A B and G = −⊗B M ;

and

categories A=Mod/A, B=Mod/B and C= Abgp,

functors F = HomA(B,−) and G = HomB(M ,−).
Example 5. This is just a silly example to indicate how one could use the base change
spectral sequence for Tor. Let us assume that B is flat as an A-module (a situation
which is common in algebraic geometry). Then we have TorA

q(M , B) = 0 for q ≥ 1,
hence the E2

p,q-page of our spectral sequence contains only non-zero entries on the
bottom row, i.e. it collapses (or degenerates, whichever terminology you like more).
But then we immediately get that

(10) TorB
p(M ⊗A B, N)∼= TorA

p(M , N).
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5 Hodge-to-de Rham spectral sequence

Unfortunately I don’t have the time and place to repeat the required definitions here.
Let’s assume you are familiar with Hodge theory, (algebraic) de Rham cohomology
and Witt vectors (after all, who isn’t?)

The usual Hodge-to-de Rham spectral sequence for a proper and smooth complex
variety reads

(11) Ep,q
1 = Hq(X ,Ωp

X/C)⇒ Hp+q
dR (X/C).

On the left we have sheaf cohomology for a particular choice of sheaves, on the
right we have de Rham cohomology. The main result about this sequence is that it
degenerates at the E1-page if X under the conditions above (you can get a spectral
sequence for non-compact non-Kähler complex manifolds).

On the other hand it is possible to introduce (algebraic) de Rham cohomology in
a more general context over any field k (possibly of positive characteristic). The
spectral sequence then reads

(12) Ep,q
1 = Hq(X ,Ωp

X/k)⇒ Hp+q
dR (X/k).

There exist explicit examples in which the spectral sequence doesn’t degenerate on
the E1-page, but Deligne and Illusie have proved that if p < dim X and a certain
criterion regarding lifting X to W2(k) is satisfied there is degeneration. Their proof
was the first algebraic proof of a result which up to then was only known using
Hodge theory!

It also gives a algebro-geometric proof of the Hodge decomposition in characteristic 0,
which uses characteristic p methods! I wish I had the time to say more about this,
because there is fascinating mathematics involved.
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6 Ext spectral sequence

Slogan Extensions of complexes are approximated by extensions of one complex
and cohomology of the other.

Let X be a smooth projective variety. Let F• and G• be complexes in Db(coh/X ).
Then

(13) Ep,q
2 = Extp

X (H
−q(F•),G•)⇒ Extp+q

X (F•,G•)

where by Extn in a triangulated category we mean the shifted Hom. A reference for
this sequence in various guises can be found in [3, remark 3.7] or [SP, tag 07AA].
Example 6 (Skyscrapers form a spanning class). One application that comes to
my mind for this spectral sequence is proving that the skyscraper sheaves form a
spanning class in Db(coh/X ) (where X is a smooth projective variety), see e.g. [3,
proposition 3.17].

Proof. We wish to prove that “(shifts of) skyscrapers k(x)[m] see all of the derived
category”, i.e. that for every object F• ∈ Db(coh/X ) we have the following:

1. if HomDb(coh/X )(k(x)[m],F
•[i]) = 0 for all x ∈ X and i, m ∈ Z then F• ∼= 0;

2. if HomDb(coh/X )(F
•[i], k(x)[m]) = 0 for all x ∈ X and i, m ∈ Z then F• ∼= 0.

As Serre duality (which is tensoring with a line bundle and shifting) reduces to a
shift when applied to a (shift of a) skyscraper sheaf, it suffices to prove the second.
I.e. for every non-trivial F• we wish to find a point x ∈ X and an integer m such
that HomDb(coh/X )(F

•, k(x)[m]) 6= 0 (we take the i and m together and rename it m).

Let m be the highest degree in which F• has cohomology. If we plug F :=Hm(F•)
and G := k(x) in (13) we see that all differentials leaving E0,−m

r are zero (as these
go down, to a place where no cohomology exists by the choice of m).

Moreover we are looking at extensions between coherent sheaves, which are zero
if p < 0. In other words: the spectral sequence is concentrated in the right half-plane.
Hence differentials entering E0,−m

r are also zero (as they come from a place where
no cohomology exists). So E0,−m

∞ = E0,−m
2 .

Now it suffices to take a point in supp(Hm(F•)) 6= ;, because

(14) E0,−m
∞ = E0,−m

2 = HomDb(coh/X )(H
m(F•), k(x)) 6= 0

implies that

(15) HomDb(coh/X )(F
•, k(x)[−m]) 6= 0.
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