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Abstract

These are the notes I prepared for my lectures at the ANAGRAMS seminar, Jan-
uary 2014. The goal was to introduce people to Grothendieck duality, by taking
the scenic route from Riemann–Roch and Serre duality (with applications) to a
description of the different proofs of Grothendieck duality.
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Lecture 1

Riemann–Roch theorem and Serre
duality

Abstract

These are the notes for my first lecture on Grothendieck duality in the ANA-
GRAMS seminar. They discuss the Riemann–Roch theorem and Serre duality. A
nice proof of Riemann–Roch is discussed. The applications of Riemann–Roch
and Serre duality are given in the second lecture.
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1.1 Riemann–Roch

1.1.1 History

The Riemann–Roch theorem has already celebrated, or will almost celebrate its
150th birthday. In 1857 Bernhard Riemann proved Riemann’s inequality (what
this means will become clear later on) [5], while his student Gustav Roch found
the missing term in 1865 [6], in order to make it an equality. Originally it was
a theorem for Riemann surfaces, firmly rooted in complex analysis, and what is
dubbed “the classical language” of divisors. With the advent of algebraic geometry
the quest for an analogous statement began, and in 1931 Friedrich Karl Schmidt
proved it for algebraic curves over perfect fields [7].
One can also look for Riemann–Roch-like statements for higher-dimensional, or
singular objects. A version for smooth surfaces was proved by Guido Castelnuovo
in 1896 (building on work of Max Noether from 1886 and Federigo Enriques1 in
1894).
With the advent of sheaf theory and its use in algebraic geometry, Friedrich Hirze-
bruch proved in 1954 a version of Riemann–Roch (now oten dubbed Hirzebruch–
Riemann–Roch) for compact complex manifolds of arbitrary dimensions. And in
1957 Alexander Grothendieck proved a far-reaching generalisation in the language
of modern algebraic geometry: it is a relative statement, which has the previous
results as a “trivial” case. This version is known as Grothendieck–Riemann–Roch,
or its abbreviation GRR.
But in this seminar we will highlight a different route of generalisations. Whereas
the previous generalisations were about proving certain numbers related to topolog-
ical information to be equal, one can also consider the intrinsic geometric structure
of objects, and look for relationships between associated structures. This is the
result of Serre duality, obtained by Jean–Pierre Serre in 1955 [8]. It relates sheaf
cohomology groups on non-singular projective algebraic varieties. It is related via
Hodge theory to the maybe more familiar Poincaré duality if the base field is the
complex numbers, but it considers the variety as a complex variety, not as a real
manifold. One can obtain Riemann–Roch-like results this way, because it effectively
reduces the amount of “abstract” cohomological information.
The final goal of this seminar is Grothendieck duality. This is a relative version
of Serre duality, with a first proof by Robin Hartshorne in 1966 [3]. This proof
is based on notes by Alexander Grothendieck, who envisioned the result in 1957
[1], but at the time the language required for the statement wasn’t available.
With the conception of derived categories [12], due to Jean–Louis Verdier2 the
generalisation become feasible.
It is still an area of active research, with many relations to other results. In the
past 2 decades it has seen interesting new proofs and generalisations. As far as I
understand one can obtain the results in the other branch of generalisations (i.e.
the Hirzebruch–Riemann–Roch and Grothendieck–Riemann–Roch type of results),
but this now requires a difficult argument based on the Lefschetz–Verdier formula
[SGA5, exposé III].

1Who apparently studied at the University of Liège.
2Its precise date is hard to pin down, he defended his PhD in 1967 but derived categories had been

used for a few years by then.
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The goal of this seminar series is to first discuss the classical results of Riemann–
Roch and Serre duality. Then we go on to discuss some applications of these results,
and start working towards Grothendieck duality in the second lecture. In the third
lecture we will discuss Hartshorne’s proof [3], while the fourth seminar is dedicated
to a more modern proof by Daniel Murfet from 2007 [4].

1.1.2 Preliminaries

From now on I will use Ravi Vakil’s notes on Riemann–Roch and Serre duality [10].
You can also take a look at [11] for a broader picture.
We first need to figure out what H0 and H1 are, in as concrete terms as possi-
ble. From now on we take C a nonsingular projective algebraic curve over an
algebraically closed field k.

Global sections

Definition 1. Let F be a sheaf on C . Then H0(C ,F) are the global sections of F
over C .

Example 2. Let C = P1
k. Then the global sections of OP1

k
on P1

k are the constant
functions, i.e.

(1.1) H0(P1
k,OP1

k
) = k.

To see this, observe that P1
k is a gluing of two A1

k ’s. The regular functions on one
part A1

k = Spec k[x] are the polynomials. But if we take a polynomial f (x), the
gluing procedure tells us that f (1/x) should be a polynomial on the other A1

k,
which is only possible if it is a constant. This is an algebraic analogue of Liouville’s
theorem in complex analysis.

We observe that the global sections have the structure of a k-vectorspace. This is
the case for all OC -modules. In this case we define

(1.2) h0(C ,F) := dimk H0(C ,F).

H1 of a sheaf

Definition 3. Let F be an OC -module. Let U = {U1, . . . , Un} be an open cover
of C . Denote Ui, j = Ui ∩ U j and Ui, j,k = Ui ∩ U j ∩ Uk. Then H1(C ,F) as a set
consists of those tuples ( fi, j)i, j where fi, j ∈ H0(Ui, j ,F) such that fi, j − f j,k + fi,k = 0
in H0(Ui, j,k,F). We will call these cocycles.

We consider H1(C ,F) as an abelian group by declaring a tuple ( fi, j)i, j zero if
there are sections gi ∈ H0(Ui ,F) such that fi, j = gi − g j in H0(Ui, j ,F). And we
get H1(C ,F) as a k-vectorspace by the k-vectorspace structure on H0(C ,F).

The definition of the zero in this vectorspace explains what H1 is about: it measures
to which extent we cannot glue global sections.
Of course, this was for a fixed covering. There is a partial order on coverings, and
if we have a cocycle on U, with U ≤ V, then by restricting it we get a cocycle on
the finer covering V. So to be strict we have to take the direct limit over these
coverings. To get some more background, see [2, exercises III.4.4 and III.4.11].
Example 4. Let G be an abelian group, and denote G the associated constant sheaf
on C . Then H1(C , G) = 0, as there are no obstructions whatsoever to glue sections.
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Example 5. Take p ∈ C and define a skyscraper sheaf kp on C by

(1.3) Γ(U , kp) =

¨

k p ∈ U
0 p /∈ U

for U ⊆ C open, which is an OC -module by the obvious multiplication. As in the
previous case we get H1(C , kp) = 0.

These are both examples of flasque sheaves, and these never have higher cohomol-
ogy.

The Euler characteristic Again the cohomology groups have a k-vectorspace
structure, which allows us to define

(1.4) h1(C ,F) := dimk H1(C ,F)

and in general we will set

(1.5) hi(C ,F) := dimk Hi(C ,F).

By a nice result of Grothendieck we know that sheaf cohomology vanishes above
the dimension of the variety [2, theorem III.2.7]. Hence in the case of a curve there
is only a H0 and a H1. We then define the Euler characteristic

(1.6) χ(C ,F) := h0(C ,F)− h1(C ,F).

In general this will be an alternating sum over more terms, up to the dimension of
the variety. We will use this definition later on, the philosophy of “taking together
all the cohomology groups” proves to be very fruitful.

A short exact sequence of sheaves Take p ∈ C . Then OC(−p) is the sheaf of
regular functions with a zero in p. Then we have a short exact sequence

(1.7) 0→ OC(−p)→ OC → kp → 0

where the first morphism is the obvious inclusion, and the second morphism is
taking the value at p. Moreover, for any invertible sheaf L we have a short exact
sequence

(1.8) 0→ L(−p)→ L→ kp → 0

by taking the sections of L which vanish at p.
The associated long exact sequence in cohomology yields

(1.9)

0→ H0(C ,L(−p))→ H0(C ,L)→ H0(C , kp)→ H1(C ,L(−p))→ H1(C ,L)→ 0

hence the Euler characteristic is additive:

(1.10) χ(C ,L(−p)) = χ(C ,L)−χ(C , kp) = χ(C ,L)− 1.

This will be used in the proof of (cheap) Riemann–Roch, see lemma 8.
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1.1.3 Statement: curves

We can now give a first version of the Riemann–Roch theorem. The statement
requires the canonical sheaf Ω1

C , or line bundle of differentials, which will be
introduced later.
The line bundle of differentials on a curve is the source of an important invariant
of the topology of the curve.

Definition 6. The genus of a curve is gC := dimk H0(C ,Ω1
C).

Theorem 7 (Riemann–Roch). Let L be an invertible sheaf of degree d on C . Let g
be the genus of C Then

(1.11) h0(C ,L)− h0(C ,Ω1
C ⊗L∨) = d − g + 1,

where L∨ is the dual of L, given by Hom(L,OC).

Hence Riemann–Roch is a relationship between some numbers: if we know all but
one of them we know all of them. The number we care most about is h0(C ,L).
When we take L = OC(D) we are interested in the dimension of the space of
functions with “prescribed behaviour at D”: we require the poles to be no worse
than what is allowed by D. As for most points the coefficient of p ∈ C will be zero,
a section of OC(D) has (possibly) some poles in the points of D and (possibly)
zeroes of at least a certain order.
As hinted at in the introduction, we consider the second term of the left-hand side
as a “correction term”. So in general we get

(1.12) h0(C ,L)≥ d − g + 1

which is called Riemann’s equality, and an important question is whether we have
equality in certain cases.
The following is dubbed “cheap Riemann–Roch” by Ravi Vakil: it is a first step
in proving Riemann–Roch and Serre duality for curves. Because it uses both H0

and H1 it is “cheap”: H1 is hard to understand. But it shows that

1. Riemann–Roch is about giving a numerical relationship: if D and D′ are
divisors such that deg(D) = deg(D′) they behave similarly;

2. one should consider all the sheaf cohomology groups together: the Euler
characteristic is well-behaved, separate dimensions are not.

Lemma 8 (Cheap Riemann–Roch). We have

(1.13) χ(C ,L) = deg(L) +χ(C ,OC),

hence for L= OC(D) we get

(1.14) χ(C ,OC(D)) = h0(C ,OC(D))− h1(C ,OC(D)) = d + 1− h1(C ,OC).

Proof. The invertible sheaf L can always be written as OC(p1+. . .+pa−q1−. . .−qb)
for pi and q j points on C , because in this case the Picard group (the group of
invertible sheaves) is isomorphic to the group of Cartier divisors (which agree with
Weil divisors, the most down-to-earth version we use here). We get a− b = deg(L).
Then we can set up an induction on the number of points a+ b: for OC it is obvious,
and adding a point uses the additivity of the Euler characteristic on short exact
sequences.
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1.1.4 Statement: surfaces

Theorem 9 (Riemann–Roch for surfaces). Let L be an invertible sheaf on a smooth
projective algebraic surface S. Then

(1.15)

χ(S,L) = h0(S,L)− h1(S,L) + h2(S,L)

= χ(S,OS) +
1

2
(L2 −L ·ωS)

= h0(S,OS)− h1(S,OS) + h2(S,OS) +
1

2
(L2 −L ·ωS)

where we take the intersection numbers of the divisors associated to L and ωS .
Moreover we have Noether’s formula

(1.16) χ(S,OS) =
ωS ·ωS +χtop(S)

12

and if C is a curve on S we have the genus formula

(1.17) 2pa(C)− 2= C2 + C · KX .

Again this is a (or rather, its different manifestations are) numerical relation(s) on
numbers associated to the surface and an invertible sheaf (or divisor) on it. We
have a H2 popping up, which we don’t understand at the moment. But once we’ve
seen Serre duality we will know how to reduce this H2 to a H0. Then we get a
formula containing H0 and H1.
This H1-term wasn’t known at first (we are now in the era of the Italian school)
and hence we only had an inequality. The failure of this equality was called the
superabundance. In the second lecture we will discuss some other interesting facts
about this.

1.2 Serre duality

1.2.1 Statement

In the statement of Riemann–Roch we used the canonical sheaf ωX (or Ω1
C for

curves, as they agree in dimension one), which made the magic work. In the more
general setting that we will enter now (possible singularities) we will need a more
general object serving the role of the canonical sheaf. We will define its properties,
and then we are left with an existence question. This exposition is taken from [2,
§III.7], in later seminars we will give more general statements and come back to
this setup.

Definition 10. Let X/k be a proper n-dimensional variety. A dualising sheaf for X
is a coherent sheaf ω◦X together with a trace morphism tr: Hn(X ,ω◦X )→ k, such
that for all F ∈ Coh/X the natural pairing

(1.18) Hom(F,ω◦X )×Hn(X ,F)→ Hn(X ,ω◦X )

composed with tr gives an isomorphism

(1.19) Hom(F,ω◦X )
∼= Hn(X ,F)∨.
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So the first part of duality theory concerns the existence of this dualising sheaf. A
sufficient condition is that X is projective [2, proposition III.7.5]. In later seminars
more general existence conditions will be discussed. One can prove that such a
dualising sheaf and trace morphism are unique if they exist [2, proposition III.7.2].
Example 11. The most trivial case one can image is X = Spec k a point. Then coher-
ent sheaves are finite-dimensional vectorspaces, and ω◦X = k. The isomorphism tr
is then the definition of the dual vectorspace.

The next part concerns the actual duality. We state [2, proposition III.7.6].
Theorem 12 (Serre duality). Let X/k be a projective n-dimensional variety. Let ω◦X
be its dualising sheaf. Then for all i ≥ 0 and F ∈ Coh/X we have functorial maps

(1.20) θ i : Exti(F,ω◦X )→ Hn−i(X ,F)∨

such that θ 0 corresponds to tr. Moreover, if X is Cohen–Macaulay3 the θ i are
isomorphisms for all i ≥ 0 and F ∈ Coh/X .

The following corollary illustrates nicely why Serre duality is truly a duality result:
it gives a relationship between Hi and Hn−i .

Corollary 13. Let X be projective Cohen–Macaulay of (equi-)dimension n over k.
Let F be a locally free sheaf on X . Then we have isomorphisms

(1.21) Hi(X ,F)∼= Hn−i(X ,F∨ ⊗ω◦X )
∨.

1.2.2 Proof of the curve case

A version of Serre duality for curves states the following.

Theorem 14. There is a natural perfect pairing

(1.22) H0(C ,Ω1
C(−D))×H1(C ,OC(D))→ k.

If we assume this theorem for now, the proof of the Riemann–Roch theorem
becomes an easy corollary.

Proof of Riemann–Roch using Serre duality. We have that

(1.23)

h0(C ,L)− h0(C ,Ω1 ⊗L∨)

= h0(C ,L)− h1(C ,L) Serre duality

= χ(C ,L) definition of χ

= d +χ(C ,OC) cheap Riemann–Roch

= d + h0(C ,OC)− h1(C ,OC) definition of χ

= d + 1− h1(C ,OC) global sections are constants

= d + 1− h0(C ,Ω1
C) Serre duality

= d + 1− g definition of g.

3A technical condition that says that “mild singularities” are allowed. It means that each local
ring has Krull dimension equal to the depth (we always have that depth is bounded above by Krull
dimension), where depth corresponds to the length of a maximal regular sequence for the local ring
itself. One can just read non-singular, which is the case we will need in later applications.
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The rest of this section is dedicated to the proof of Serre duality in the curve case.
It is taken from Vakil’s notes, which are based on [9, §2] and originate from a proof
by Weil. The original text of Serre is (as usual) beautiful, and definitely deserves a
reading. It’s hard to believe it was written in the fifties.

Adèles When I was preparing these notes this part scared me, because “adèle” is
a scary word used by people who know something about class field theory4. I am
not one of them. The approach of the proof of Riemann–Roch taken by Vakil, Serre
and Weil is by considering “pre-adèles” or repartitions. This avoids the technical
machinery of class field theory (it would be insane to use it to prove something
as down-to-earth as Riemann–Roch) and has a nice interpretation in terms of the
geometry. By preparing these notes I finally got myself familiar with adèles, so I
hope other people will benefit too from advertising this approach.
Before we start by building things from the ground up, remark that the occurence
of techniques from class field theory is not too far-fetched. It deals with fields,
there is a bijection between curves and their function fields [2, §I.6], and the ring
of adèles of the function field of a curve satisfies self-duality which is one of the
results in Tate’s thesis. This self-duality implies Riemann–Roch, and we will develop
as much of class field theory as required for the proof. So let’s get started.

The part on I(D) To stick to Serre’s notation we will denote

(1.24) I(D) := H1(C ,OC(D)).

The dimension of this vectorspace pops up in the statement of cheap Riemann–
Roch, and we decided that h1 is not an easy invariant. Hence we would like to get
a better understanding.

Definition 15. A repartition is an indexed set ( fp)p∈C with fp ∈ k(C) for all p ∈ C
such that fp ∈ OC ,p for all but finitely many points p. The set R of repartitions comes
equipped with a ring structure (pointwise addition and multiplication), with k(C)
being a subring of this (if f ∈ k(C) we take fp = f , which is regular at all but
finitely many points of C), and R being a k(C)-algebra.

Hence a repartition is a collection of rational functions, indexed by the points of the
curve, such that at most finitely many rational functions have a pole in the point at
which they are associated. This ring contains tons of potential information (recall
that H1 was about gluing local sections to a global section, and the obstructions in
doing so), and we wish to put it to good use.

Definition 16. Let D be a divisor on C . We set

(1.25) R(D) := {( fp)p∈C | vp( fp) + vp(D)≥ 0},

an additive subgroup of R.

This is analogous to OC(D), but taken for each point separately. Recall that OC(D)
is the sheaf of meromorphic functions on C with prescribed behaviour in D: if np is
the coefficient of the point p in D, then we require at most a pole of order np is np

is positive, or at least a zero of order np if np is negative5.

We can now interpret H1 in terms of these objects.
4It is also the street in which the math department of Université Paris-Sud is located.
5Sometimes the other convention is used. . .
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Proposition 17. We have

(1.26) I(D) = H1(C ,OC(D))∼= R/(R(D) + k(C)).

Proof. Associated to the field k(C) we have the constant sheaf k(C) on C . We have
a natural injection of OC(D) into this constant sheaf, and we define S to be the
cokernel of this injection, i.e. we have the short exact sequence

(1.27) 0→ OC(D)→ k(C)→ S→ 0.

Taking global sections we get

(1.28) . . .→ k(C)→ H0(C , S)→ H1(C ,OC(D))→ H1(C , k(C)) = 0

because constant sheaves don’t have higher cohomology groups. Hence we have to
prove that

(1.29) H0(C , S)∼= R/R(D).

To prove this, we have to interpret S as the quotient sheaf of k(C), which we do by
looking at its stalks. If p is a point of C , we have

(1.30) Sp = (k(C)/OC(D))p = { f ∈ k(C) | vp( f )≥−vp(D)}.

Hence

(1.31) R/R(D) =
⊕

p∈C

Sp,

the quotient is a sum of skyscraper sheaves, i.e. a again a skyscraper sheaf.
We wish to show that S equals this same direct sum of skyscraper sheaves, i.e. that
sections of S consist of a selection of values of Sp for all p, almost all of which are
zero. Elements of the stalk are represented by giving an open neighbourhood of
the point and a section on this neighbourhood, and sections that are equal on some
smaller neighbourhood are identified.
So let p be a point of C , and let s ∈ S(U) be a section defined on an open
neighbourhood U of p. We wish to show that it is a section of the sum of skyscraper
sheaves. To do so we look for a (smaller) neighbourhood U ′ ⊆ U of p such
that s|U ′\{p} = 0, because then s belongs to the skyscraper sheaf associated to p.
It suffices to take this smaller neighbourhood disjoint from

• supp(D) \ {p} (i.e. we ignore the points of the divisor, except potentially p
because we are interested in this point),

• s−1(∞) \ {p} (i.e. away from the poles of s, except for p of course because
we wish to include the point in our neighbourhood).

In order to use this setup: take s an element of the stalk Sp. It has a lift in some
neighbourhood to a section s′ of the constant sheaf k(C) (because S is defined as a
quotient sheaf). On the U ′ (relative to the neighbourhood of p we used to obtain
the lift) everything is regular, so we can choose a section of OC(D) that cancels
what is going on for s′ on U ′ and in the quotient for the stalk it becomes zero when
restricted to U ′ \ {p}.
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The part on J(D) and J We now set

(1.32) J(D) := I(D)∨ = (R/(R(D) + k(C)))∨.

Hence an element of J(D) is a k-linear form on R (our huge ring of reparti-
tions) which vanishes on R(D) and k(C). Because D ≤ D′ implies R(D) ⊆ R(D′),
hence J(D′)⊆ J(D) we can define

(1.33) J :=
⋃

D

J(D).

Lemma 18. J is a k(C)-vectorspace.

Proof. Take f ∈ k(C) and α ∈ J . We consider

(1.34) f α: R→ k : r 7→ 〈α, f r〉

which is a linear functional on R, which vanishes on k(C). This assignment gives J
the structure of a k(C)-vectorspace: take α ∈ J(D) and ( f ) = D′. Then the lin-
ear form f α vanishes on R(D − D′), because if r ∈ R(D − D′) then f r ∈ R(D),
hence 〈α, f r〉= 0. So f α belongs to J(D− D′), and therefore to J .

Moreover, whereas it is a horribly big k-vectorspace, it is well-behaved as a k(C)-vec-
torspace.

Lemma 19. We have dimk(C) J ≤ 1.

Proof. Take α,β linearly independent over k(C). We can find a divisor D such
that α,β ∈ J(D), and denote d = deg(D).
Assume that Dn is any divisor such that deg(Dn) = n. Then for each section
f , g ∈ H0(C ,OC(Dn)) we get that f α ∈ J(D− Dn) by the previous argument, and
similarly gβ ∈ J(D− Dn). Because α and β are linearly independent we know that

(1.35)
H0(C ,OC(Dn))⊕H0(C ,OC(Dn))→ J(D− Dn)

( f , g) 7→ f α+ gβ

is an injection, hence

(1.36) dimk J(D− Dn)≥ 2 h0(C ,OC(Dn)).

On the left-hand side we have

(1.37)

dimk J(D− Dn)
= dimk I(D− Dn) definition

= h1(C ,OC(D− Dn)) proposition 17

= h0(C ,OC(D− Dn))− (d − n) + constant cheap Riemann–Roch

= n+ constant′ n� 0.

In this case, constant means independent of n or Dn.
On the right-hand side we get by cheap Riemann–Roch (lemma 8) that

(1.38) 2 h0(C ,OC(Dn))≥ 2 deg(Dn) + constant′′

so if n� 0 we get a contradiction as two sides cannot be equal. This dimension
count over k proves that α and β cannot be linearly independent, which proves
that dimk(C) J ≤ 1.
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The part on differentials We will need to know what differentials on a curve are.
In courses on differential geometry or complex analysis one has seen these before.
In the algebraic geometry case one uses Kähler differentials to have a nice analogue.
It provides another natural sheaf, besides the structure sheaf (and its twists). On a
curve it will be an invertible sheaf, denoted Ω1

C and it has an associated canonical
divisor KC .
Another piece of notation that we will use is the set of meromorphic differentials M ,
which is a one-dimensional k(C)-vectorspace as these are exactly the objects that
(locally) look like f (z)dz, with f ∈ k(C). As this is a one-dimensional vectorspace,
we just take the divisor associated to any meromorphic differential, and this will
be the canonical divisor introduced before.
We can now consider some differential forms (both meromorphic and holomorphic)
on a curve. The terminology is mildly inspired by complex geometry here.

Example 20. Take C = P1
k. Then we have a differential form ω = dz on A1

k, and
as the transition map to the second chart is z 7→ z−1 we get that d(z−1) =−z−2dz,
hence this differential form has a pole of order two at∞. Its associated canonical
divisor is −2∞. There are no holomorphic differentials on Pk

1, its genus is zero.

Example 21. Take C = C/Λ a complex elliptic curve, defined by taking a quotient
by a torus. There is a differential form ω= dz on C, which induces a differential
form on C . But as it is everywhere holomorphic it has no poles (nor zeroes), and
the canonical divisor is zero. Hence the only holomorphic differential forms are the
constants, and its genus is one.

For every point p ∈ C there is a residue map

(1.39) resp : M → k,

analogous to the case of complex analysis. To define this map we can write a
meromorphic differential locally around p as

(1.40) (a−n/tn + . . .+ a−1/t)dt + regular part

where t is a uniformising parameter, and set the residue equal to a−1. It requires
some work to prove that this is independent of the choice of local parameter
(especially in the case of positive characteristic) [9]6.
We moreover have the residue theorem, which says that for a meromorphic differen-
tial ω ∈ M we have

(1.41)
∑

p∈C

resp(ω) = 0.

The complex analytic case can be done by Stokes’ theorem, for the general case we
refer to [9].

The setup for the final part of the proof We wish to show that two vectorspaces
are dual to eachother, and we will explicitly construct a linear functional for this.

6As suggested in Ravi Vakil’s notes, if one assumes the complex analytic case, there is a nice proof
for the general case, as suggested by Kiran Kedlaya. Uniformising parameters t and u are related
by t = u +

∑+∞
k=2 ckuk, so if

∑−1
i=−n ai t

idt and
∑−1

i=−n biu
idu are two local expressions, we get a

polynomial identity in the ai ’s and bi ’s whose coefficients are integers. But over C we have an equality,
hence the polynomial identity reduces to an identity over every field.
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To do so, take ω ∈ M a meromorphic differential on C . We define the divisor

(1.42) (ω) :=
∑

p∈C

vp(ω)p

hence the sheaf Ω1(−D) is the sheaf of differentials such that (ω)≤ D.
Then we define the pairing

(1.43) 〈−,−〉: M × R→ k : (ω, r) 7→ 〈ω, r〉=
∑

p∈C

resp(rpω).

It has the following properties.

Lemma 22. The pairing 〈−,−〉 satisfies

1. 〈ω, r〉= 0 if r ∈ k(C);

2. 〈ω, r〉= 0 if r ∈ R(D) and ω ∈ H0(C ,Ω1
C(−D));

3. 〈 fω, r〉= 〈ω, f r〉 if f ∈ k(C).

Proof. 1. This is the residue theorem.

2. The product rpω cannot have a pole, for any p ∈ C , because the zeroes must
at least cancel the poles by the assumptions on r and ω.

3. Both pairings evaluate to a sum of residues over fωr.

For each meromorphic differential ω in H0(C ,Ω1
C(−D)) we have a linear func-

tional θ(ω) on R, and by items 1 and 2 of lemma 22 it is also a linear functional
on R/(R(D) + k(C)). Hence we get a map

(1.44) θ : H0(C ,Ω1
C(−D))→ J(D)

as J(D) is shorthand for the dual of R/(R(D) + k(C)) by proposition 17. This θ
is moreover defined as a map M → J in general. But we have the following nice
property, that relates the more general map to the specific map.

Lemma 23. Let ω be a meromorphic differential such that θ(ω) ∈ J(D). Then we
have that ω ∈ H0(C ,Ω1

C(−D))7.

Proof. Assume on the contrary that ω /∈ Ω1(−D). This means that there is a
point p ∈ C such that ω has a pole in p that is bigger than allowed by D, or
symbolically

(1.45) vp(ω)< vp(−D).

Then we take a repartition r ∈ R(D) by setting

(1.46) rq =

¨

0 q 6= p
1/tvp(ω)+1 q = p.

7Remark that Serre denotes this sheaf Ω1
C (D), because for differentials he reverses the terminology.
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Because

(1.47) vp(rpω) =−1

we get

(1.48) 〈ω, r〉=
∑

q∈C

res(rqω) = res(rpω) 6= 0.

But this means θ (ω) is not zero on R(D), but this is required by the definition of θ ,
hence we obtain a contradiction.

Recall that we wish to prove that θ induces an isomorphism from H0(C ,Ω1
C(−D))

to H1(C ,OC(D))∨, and this last object is also denoted J(D).

Proof of Serre duality for curves. To see that θ is injective, take ω ∈ H0(C ,Ω1
C (−D))

such that θ(ω) = 0. Then by lemma 23 we have that ω ∈ Ω1
C(−D′) for every

divisor D′, which implies ω= 0, as all possible configurations of poles and zeroes
should be valid at the same time.
To see that θ is surjective, observe that by item 3 of lemma 22 we have that θ
is k(C)-linear, from M to J . By definition we have dimk(C)M = 1, by lemma 19 we
have dimk(C) J ≤ 1. An injection of finite-dimensional vectorspaces into a smaller
vectorspace is necessarily surjective.
Hence if α is an element of J(D) we get a meromorphic differential ω such
that θ(ω)α, and lemma 23 shows that ω ∈ Ω(−D).

1.2.3 The general case

The proof for curves has an explicit flavour in terms of residues to it. In higher
dimensions we lose this. For a nice (but abstract) proof one can take a look at [2,
§III.7]. The proof goes as follows, for X ⊆ Pn

k:

1. Prove Serre duality for Pn
k, which is very concrete (see later). The dualizing

sheaf ωPn
k
=
∧nΩPn

k/k
is OPn

k
(−n− 1).

2. Prove that ω◦X = Extr
Pn

k
(OX ,ωPn

k
) is a dualising sheaf for X , where r is the

codimension of X . Remark that Exti
Pn

k
(OX ,ωPn

k
) = 0 for all i < r.

The question becomes: can we interpret this dualising sheaf? We know that for Pn
k

that the dualising sheaf is given by the canonical sheaf, hence the abuse of notation.
Similarly, we have that for X nonsingular projective that this is true. The statement
of Serre duality holds for Cohen–Macaulay varieties, i.e. we allow mild singularities.
But then it’s harder to interpret the dualising sheaf.
For completeness’ sake we can give the duality result for Pn

k = Proj k[x0, . . . , xn].
Recall that OPn

k
(1) consists of the linear forms on Pn

k, and higher twists corresponds
to higher-degree equations.

Theorem 24 (Serre duality for Pn
k). We have that

1. Hi(Pn
k,OPn

k
(r)) = 0 for all 0< i < n and r ∈ Z.

2. Hn(Pn
k,OPn

k
(−n− 1))∼= k;
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3 0 4 0 0
2 0 3 0 0
1 0 2 0 0
0 0 1 0 0
-1 0 0 0 0
-2 0 0 1 0
-3 0 0 2 0
-4 0 0 3 0
-5 0 0 4 0

r
i -1 0 1 2

Table 1.1: hi(P1
k,OP1

k
(r))

4 0 15 0 0 0
3 0 10 0 0 0
2 0 6 0 0 0
1 0 3 0 0 0
0 0 1 0 0 0
-1 0 0 0 0 0
-2 0 0 0 0 0
-3 0 0 0 1 0
-4 0 0 0 3 0
-5 0 0 0 6 0
-6 0 0 0 10 0
-7 0 0 0 15 0

r
i -1 0 1 2 3

Table 1.2: hi(P2
k,OP2

k
(r))

3. H0(Pn
k,OPn

k
(r))×Hn(Pn

k,OPn
k
(−n− r − 1)) → Hn(Pn

k,OPn
k
(−n− 1)) ∼= k is a

perfect pairing of k-vectorspaces.

This yields the pictures in tables 1.1 to 1.4.
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5 0 56 0 0 0 0
4 0 35 0 0 0 0
3 0 20 0 0 0 0
2 0 10 0 0 0 0
1 0 4 0 0 0 0
0 0 1 0 0 0 0
-1 0 0 0 0 0 0
-2 0 0 0 0 0 0
-3 0 0 0 0 0 0
-4 0 0 0 0 1 0
-5 0 0 0 0 4 0
-6 0 0 0 0 10 0
-7 0 0 0 0 20 0
-8 0 0 0 0 35 0
-9 0 0 0 0 56 0

r
i -1 0 1 2 3 4

Table 1.3: hi(P3
k,OP3

k
(r))

6 0 210 0 0 0 0 0
5 0 126 0 0 0 0 0
4 0 70 0 0 0 0 0
3 0 35 0 0 0 0 0
2 0 15 0 0 0 0 0
1 0 5 0 0 0 0 0
0 0 1 0 0 0 0 0
-1 0 0 0 0 0 0 0
-2 0 0 0 0 0 0 0
-3 0 0 0 0 0 0 0
-4 0 0 0 0 0 0 0
-5 0 0 0 0 0 1 0
-6 0 0 0 0 0 5 0
-7 0 0 0 0 0 15 0
-8 0 0 0 0 0 35 0
-9 0 0 0 0 0 70 0

-10 0 0 0 0 0 126 0
-11 0 0 0 0 0 210 0

r
i -1 0 1 2 3 4 5

Table 1.4: hi(P4
k,OP4

k
(r))
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More on Riemann–Roch and Serre
duality, with applications

Abstract

These are the notes for my second lecture on Grothendieck duality in the
ANAGRAMS seminar. They continue the discussion of Riemann–Roch and
Serre duality started in the first lecture, by giving some applications.
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2.1 Applications of Riemann–Roch for curves

As the first lecture didn’t allow for a discussion of any applications I have moved
these to (the notes of) the second lecture.

2.1.1 Geometric genus equals arithmetic genus

For a projective nonsingular curve C we get that

(2.1) parith(C) = 1−χ(C ,OC) = h1(C ,OC) = h0(C ,Ω1
C) = pgeom(C).

Hence the arithmetic and geometric genus agree. The geometric genus “counts
the number of holes” whereas the arithmetic genus doesn’t really count anything
(it can be negative in more general situations1, because its generalisation is an
alternating sum).

2.1.2 Curves of degree d in Pn
k

If C is given as a curve of degree d in Pn
k we can take a hyperplane section C∩H = D

for a divisor. Then we get

(2.3) χ(L(D)) = d + 1− pa(C)

as the degree of the divisor D is always d, which can be considered an application
of Bézout’s theorem.

2.1.3 Vanishing of H1

The theorem of Riemann–Roch should be view in terms of the Riemann–Roch prob-
lem, which is the study of the (asymptotic) behaviour of h0(C ,OC(np)), for p ∈ C ,
or more general divisors. So the question becomes: can we determine h1, or the h0

of ωC(−D)? The answer is given in [1, remark IV.1.3.2]:
Lemma 25. If deg(D)> 0 and n deg(D)> deg(KC) then h0(C ,OC(KC − nD)) = 0.

Proof. This is an application of [1, lemma IV.1.2]: if h0(C ,OC(D)) ≥ 1 for some
divisor D we have deg(D)≥ 0. To prove this statement, observe that we can obtain
an effective divisor D′ linearly equivalent to D, because we can use the non-zero
global sections of OC(D) and take the divisor of zeroes [1, proposition II.7.7].
Hence deg(D) = deg(D′)≥ 1.
So if n deg(D)> deg(KC) we get deg(KC − nD)≤−1 and therefore

(2.4) h0(C ,OC(KC − nD)) = 0.

So if KC − nD becomes “sufficiently negative” its H0 will vanish, hence we have
solved the Riemann–Roch problem!

1E.g., the disjoint union of two P1
k ’s, because its arithmetic genus equals

(2.2) 1−χ(P1
k t P

1
k ,OP1ktP

1
k
) = 1− (2− 0) =−1.

.
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2.1.4 The degree of the canonical divisor

The canonical divisor still might be a mysterious beast. But Riemann–Roch at least
tells us its degree: applying it to KC and using the definition of the genus we get

(2.5) g − 1= deg(KC) + 1− g

i.e. deg(KC) = 2g − 2.
So for P1

k, where the genus is 0, we get that the canonical divisor is the −2∞ we’ve
seen before. For elliptic curves (i.e. curves of genus 1) we get that the canonical
divisor has degree 0, and again because the genus is 1 we know that there are
(only) the constants as differentials, hence the canonical divisor is equivalent to 0.

2.1.5 Rational function with pole in a point

The Riemann–Roch problem has several special cases. One of them is the following
situation [1, exercise IV.1.1]:

There exists a nonconstant rational function which is regular every-
where except at a given point p.

It suffices to take D = p in the context of the Riemann–Roch problem, and as soon
as n > deg(KC) we have a non-zero global section for OC(np). By the previous
results on the degree of the canonical divisor we can easily understand how high
we should at least go:

1. if C = P1
k then n = 1 suffices as the degree of the canonical divisor is −2,

our point p ∈ P1
k corresponds to an a ∈ C on some affine chart, the desired

rational function with a pole in p is nothing but (z− a)−1;

2. if C is an elliptic curve the degree of the canonical divisor is 0, so again n = 1
suffices;

3. for higher genus curves the choice of n> 2g−2 will always give us a rational
function, but in general a lower number could do. This is discussed further
in the paragraph on Weierstrass gaps.

2.1.6 Rational functions with poles in several points

In a completely analogous manner we can find rational functions with poles in any
number of points, as long as we don’t put a bound on the multiplicity of the pole.
This is [1, exercise IV.1.2]. At this rate we will have solved all the exercises of this
section in a whim2

2.1.7 Weierstrass points

We had the Riemann–Roch problem for a divisor of the form np, where we were in-
terested in the numbers h0(C ,OC (np)). These numbers count the rational functions
with prescribed behaviour. If n> deg(KC) = 2g − 2 we had a complete knowledge

2I won’t do this though, but you are cordially invited to do them as they are interesting and not as
frightening as most exercises in Hartshorne’s book.
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n -1 0 1 2 . . . 2g − 2 2g − 1 2g . . .

h0(C ,OC(np) 0 1 ? ? ? ? g g + 1 . . .

Table 2.1: Behaviour of h0(C ,OC(np)

about the behaviour. On the other hand, if n ≤ −1 we have no global sections,
whereas n= 0 yields the constants. For n= 2g − 1 on the other hand we get

(2.6) h0(C ,OC((2g − 1)p)) = 2g − 1− g + 1= g

and for n = 2g − 1+ k we get g + k as the correction term will always be zero.
Hence we get the following table We also know that

1. the numbers that we fill in have to be increasing: if a pole of order at most n
in p exists, it surely exists if we allow poles of order n+ 1;

2. they can moreover only increase by at most 1: if f and g are rational
functions with a pole of the same order, then there exists a constant c such
that f + cg has a pole of lower order (by cancelling the leading term in the
local expression for f and g).

For low genera we also know what happens:

1. g = 0 has no missing terms, it is (starting from n=−1)

(2.7) 0,1, 2,3, 4,5, . . .

2. g = 1 has no missing terms, it is (starting from n=−1)

(2.8) 0,1, 1,2,3, 4, . . .

3. g = 2 has one missing term, it is (starting form n=−1)

(2.9) 0, 1,1, ?, 2, 3, . . .

What we don’t know is whether the sequence of numbers will depend on the choice
of p (it does). It is a bit mysterious at first sight, but on a genus 2 curve there will
be exactly 6 points3 for which the missing term is 2, whereas all the others have
missing terms 1. This behaviour is the same for all higher genera: there are finitely
many points in which the behaviour is “not as expected”, where the expectation
is that the sequence starts with g + 1 copies of 1, after which it increases by 1
each time. Moreover, the number of exceptional points is g(g2 − 1) (if one weighs
them).

Definition 26. The points with “exceptional behaviour” as explained before are
called Weierstrass points

The sequence of missing terms associated to such a Weierstrass point is interesting
to study, and depends on the type of curve we are considering. This ties in with
the use of Riemann–Roch in the classification of curves. In the case of hyperelliptic
curves (in arbitrary genus) the Weierstrass points are exactly the ramification points
(with their correct weights!) but in general it’s harder to say what they correspond
to geometrically.

3These 6 points correspond to the ramification points of the degree 2 map to P1
k: every genus 2

curve is hyperelliptic, i.e. given by y2 = f (x) for f of degree 5 or 6.
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2.1.8 The group law on elliptic curves

The Riemann–Roch theorem is also useful in proving that an elliptic curve E has
a group structure. If one wishes to construct the group law by purely geometric
notions proving the associativity is a bit hard (which is odd, because most of the
times this axiom is rather easy to check). But there is an obvious group structure
on the divisors, which we can put to good use.
To do so we will need Pic0(E), this is the subgroup of degree-zero elements of Pic(E)
which is the group of all divisors modulo linear equivalence. The divisor of a rational
function has degree zero, hence we have defined

(2.10) Pic0(E) = {D ∈ Div(E) | deg(D) = 0}/{÷( f ) | f ∈ k(E)}.

Then we pick a neutral element p0 ∈ E. This yields the map

(2.11) E 7→ Pic0(E) : p 7→ OE(p− p0).

To see that this is a surjection, we take D a divisor of degree 0. We wish to
show that there exists a unique point p ∈ E such that D is linearly equivalent
to p− p0. As the degree of the canonical divisor is 0 we get deg(KE −D− p0) =−1,
so h0(E,OE(KE − D − p0)) = 0. Hence h0(E,OE(D + p0)) = 1. As before we can
find an effective divisor linearly equivalent do D+ p0, but as the the dimension
is 1 and by applying [1, proposition II.7.7] we get that this divisor is unique (the
linear system is zero-dimensional). As the degree of this divisor is 1 we get a single
point p, i.e. the divisor p is rationally equivalent to D+ p0, or D = p− p0 in Pic0(E).

2.1.9 Classification of curves

Time and space don’t permit me to write anything about it, but Riemann–Roch is
crucial in tackling classification problems for curves.

2.2 Applications of Riemann–Roch for surfaces

2.2.1 Irregularity of a surface

Let S be a projective nonsingular surface. Its geometric genus is

(2.12) pgeom(S) = h0(S,ωS) = h2(S,OS)

whereas its arithmetic genus is parith(S) = h2(S,OS)− h1(S,OS). Hence

(2.13) pgeom(S)≥ parith(S).

Originally the Italian school thought (without knowing what sheaf cohomology
was, they did all these things in more classical terms) that there was an equality.
When they found out there are surfaces that have the strict inequality they dubbed
the difference the irregularity.

2.2.2 Vanishing of H2

As in the case of curves we have a criterion for the vanishing of a cohomology
group if a certain numerical criterion is satisfied [1, lemma V.1.7].
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Proposition 27. Let H be an ample divisor on a surface S. Then there exists an
integer n0 (in fact, it is KS · H) such that, if D is a divisor for which D · H > n0,
then H2(S,L(D)) = 0.

Recall that the situation for curves asks deg D > n0 = 2gC − 2 for H1(C ,L(D)) to
be zero.
These vanishing results are pervasive throughout algebraic geometry. As we’ve seen
in this talk the correct notion to study is the Euler–Poincaré characteristic, which
incorporates all cohomological information. If one is interested in a single number
though (which one often is) this requires these vanishing results in order to obtain
a conclusion on this single number.

2.2.3 Invariants of special surfaces

Surfaces come in a wealth of families or shapes. Often we can find interesting
(numerical) information for a specific choice of surface(s).

1. If S is a surface of degree d in P3
k (i.e. defined by a homogeneous equation of

degree 4 in four variables such that the Jacobian matrix is nonsingular) then
the self-intersection of the canonical divisor KS is given by

(2.14) KS · KS = d(d − 4)2.

Hence this number depends on d, in the same way deg(KC) depended on g.

2. If S is again a surface of degree d in P3
k such that it contains a straight

line C = P1
k then C · C = 2 − d. Hence we get negative self-intersection

if d ≥ 3, which at first is a truly counterintuitive thing. In characteristic 0 one
can find such a surface for any choice of d.

3. If S = C × C ′ is a product of two curves of genus g and g ′ respectively, then

(2.15) KC×C ′ = 8(g − 1)(g ′ − 1).
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Lecture 3

Derived categories and
Grothendieck duality

Abstract

These are the notes for my third lecture on Grothendieck duality in the ANA-
GRAMS seminar. We (finally) come to a statement of Grothendieck duality.
In order to do so we first review derived categories, from the viewpoint of
someone who has already touched homological algebra in the usual sense [9].
After this quick reminder some motivation for considering a possible generalisa-
tion of Serre duality is discussed, after which the full statement of Grothendieck
duality (in various incarnations) is given. To conclude some applications of
Grothendieck duality are discussed, from my point of view on the subject. I
hope these serve both as a motivation for Grothendieck duality and as a moti-
vation to study these interesting subjects, regardless from their relationship
with Grothendieck duality.
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3.0 Reminder on derived categories

3.0.1 Derived functors

The main idea behind derived categories is to make working with derived functors
more natural. Recall that given a left (or right) exact functor between abelian
categories one can determine its derived functors, which form a family of functors.
These functors measure the extent to which the original functor is not exact, and
they can give interesting algebraic or geometric information (depending on the
original choice of functor).

Example 28. So far we have used just one derived functor, which was sheaf
cohomology. The left-exact functor under consideration is Γ(X ,−), its derived
functors Hi(X ,−).

There are other examples.

Example 29. Global sections are a special case of pushforward: if f : X → Spec k is
the structural morphism then f∗(−) = Γ(X ,−). We obtain a sheaf on Spec k, which
is nothing but a vectorspace, the only non-empty open set has Γ( f −1(Spec k),−)
as its sections. We can conclude that f∗ will not be right-exact in general as it is a
generalisation of global sections.

Example 30. Another well-known left exact functor is HomA(M ,−), which is an
endofunctor on the abelian category A-Mod for A a commutative ring and M
an A-module), whose right-derived functors are the Ext-functors. These have a
down-to-earth interpretation as extensions, by the Yoneda Ext-construction.

Example 31. Adjoint to HomA(M ,−) we have −⊗A M , whose left-derived functors
are the Tor-functors.

3.0.2 Derived categories

The goal is to capture all of these in one single total derived functor. So instead of
working with the family (RnF)n∈N one wants to construct a functor RF replacing
the whole family.
To calculate (co)homology one uses injective (or projective, or flat, or flabby, or . . .
depending on the context) resolutions. So instead of using a single object, it is
natural to consider a whole (co)chain complex of objects. That is why, instead of
using an abelian category A (take for example A= Coh/X the abelian category of
coherent sheaves on a scheme), one uses Ch(A): the abelian category of (co)chain
complexes over A.
Because the calculation of (co)homology is invariant up to homotopy equivalence,
we construct the category K(A) by identifying morphisms in Ch(A) which are
homotopy equivalent. This is an intermediate step which can be skipped, but it
helps in proving the main properties of the resulting object.
The final step in the construction is the most technical one, and consists of in-
verting the quasi-isomorphisms to obtain the derived category. Recall that a quasi-
isomorphism is a morphism which induces isomorphisms in the (co)homology, i.e.
if f : A• → B• is a morphism such that Hn(A•) ∼= Hn(B•) for all n then we would
like A• and B• to be isomorphic in our desired derived category. This way, an object
becomes isomorphic to its resolution. The way to obtain this is analogous to the
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localisation of a ring: we formally add inverses. That this construction works as
intended follows from the Gabriel–Zisman theorem.
To summarise, the construction goes through the following steps

1. pick an abelian category A (Coh/X , Qcoh/X or just A-Mod if you like);

2. consider the abelian category of (co)chain complexes over A;

3. construct the category of (co)chain complexes K(A) over A by identifying
the homotopy equivalences in Ch(A);

4. construct the derived category D(A) of A by inverting the quasi-isomorphisms
in K(A).

Instead of considering all (co)chain complexes, we can also consider complexes
which satisfy a certain boundedness assumption. We could ask for (the cohomology
of) the complexes to be

1. bounded on both sides (denoted Db(A)),

2. bounded below or above (denoted D+(A) resp. D−(A)),

3. concentrated in positive or negative degrees (denoted D≥0(A) resp. D≤0(A)).

One interesting property of the derived category is that the Hom-functor for A

turns into a device that knows all Exti .

Example 32. We have a canonical inclusion of A into D(A), by considering an
object as a cochain complex in degree 0. Now we can shift objects: the object A[i]
in D(A) is the cochain complex such that A lives in degree i. Then we obtain the
formula

(3.1) HomD(A)(A, B[i])∼= Exti
A
(A, B).

To see why this is true: the object B[i] is isomorphic to a shift of an injective
resolution in D(A), hence the Hom in D(A) is nothing but a way of computing the
derived functors of Hom.
Sometimes we’ll denote HomD(A)(A•, B•) by RHom•(A•, B•) to save a little on the
notation.

3.1 Grothendieck duality

3.1.1 Motivation

There are several ways of motivating Grothendieck duality, and the desire to
generalise Serre duality1. Of course, the restriction on the classical Serre duality
are rather severe: we want a smooth (or mildly singular) projective variety over a
field, and a vector bundle. Can we do similar things:

1. for more general schemes?

1If unfamiliar with Serre duality, one is either invited to read the notes to the first lecture, or glance
at the summary of Serre duality later on.
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2. over more general base schemes?

3. for more general sheaves?

The answer will be yes, otherwise we wouldn’t be discussing Grothendieck duality.

Adjoint functors A more down-to-earth (or less categorical) motivation for the
form that Grothendieck duality often takes is given in [6, chapter 6]. Recall from
the first lecture the statement of Serre duality, preceded by the required definition
of a dualising sheaf, as given in [4].
Definition 33. Let X/k be a proper n-dimensional variety. A dualising sheaf for X
is a coherent sheaf ω◦X together with a trace morphism tr: Hn(X ,ω◦X )→ k, such
that for all F ∈ Coh/X the natural pairing

(3.2) Hom(F,ω◦X )×Hn(X ,F)→ Hn(X ,ω◦X )

composed with tr gives an isomorphism

(3.3) Hom(F,ω◦X )
∼= Hn(X ,F)∨.

Then the statement, where X admits a dualising sheaf, reads:

Theorem 34 (Serre duality). Let X/k be a projective n-dimensional variety. Let ω◦X
be its dualising sheaf. Then for all i ≥ 0 and F ∈ Coh/X we have functorial maps

(3.4) θ i : Exti(F,ω◦X )→ Hn−i(X ,F)∨

such that θ 0 corresponds to tr. Moreover, if X is Cohen–Macaulay2 the θ i are
isomorphisms for all i ≥ 0 and F ∈ Coh/X .

We also obtained a corollary, which explains the name “duality”: it relates Hi

to Hn−i , and does so by using a duality of vector spaces.

Corollary 35. Let X be projective Cohen–Macaulay of (equi-)dimension n over k.
Let F be a locally free sheaf on X . Then we have isomorphisms

(3.5) Hi(X ,F)∼= Hn−i(X ,F∨ ⊗ω◦X )
∨.

This is just one of the many ways of writing the isomorphism. Another would be

(3.6) Homk

�

Hi(X ,F), k
�∼= Hn−i

�

X ,Hom(F,ω◦X )
�

.

We are almost where we want to be. The last step to take is “go relative”. Which
of course in this case is not that spectacular. So let’s look at the structural mor-
phism f : X → Spec k. We are working for a vector bundle F on X , so we could
also look at a vector bundle on Spec k, which is nothing but a finite-dimensional
vectorspace V . Generalising the previous equation, and applying the tensor-Hom
adjunction we obtain

(3.7)

Homk

�

Hi(X ,F), V
�∼= Hn−i

�

X ,Hom(F, V ⊗k ω
◦
X )
�∼= Extn−i

�

F, V ⊗k ω
◦
X

�

.

With a little imagination this looks like an adjunction:
2A technical condition that says that “mild singularities” are allowed. It means that each local

ring has Krull dimension equal to the depth (we always have that depth is bounded above by Krull
dimension), where depth corresponds to the length of a maximal regular sequence for the local ring
itself. One can just read non-singular, which is the case we will need in later applications.
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1. the cohomology groups Hi(X ,F) can be taken together3 to R f∗(F);

2. by the properties of the derived category we can take Ext’s together into
a Hom in the derived category, see (3.1).

Hence we can write Serre duality as

(3.8) HomDb(Spec k)
�

R f∗(F), V
�∼= HomDb(X )

�

F, f !(V )
�

where Db(Spec k) is the bounded derived category of finite-dimensional k-vector
spaces and Db(X ) is the bounded derived category of coherent sheaves on X
(assume X is smooth).
Hence Serre duality asserts the existence of a dual

(3.9) f ! : Db(Spec k)→ Db(X )

which in this case is explicitly given by −⊗k ω
◦
X . But in this statement we could

easily replace f : X → Spec k by a more general f : X → Y , and the existence of a
right adjoint f ! would still make sense!
A word on the notation f !:

1. It is often pronounced “ f upper shriek”, and it’s named “exceptional inverse
image”;

2. It only lives on the level of derived categories, unlike f∗ and f ∗, which get
derived into R f∗ and L f ∗, so in line with [SGA43, §3.1, éxposé XVIII] which
says (in a slightly different context, but still valid)

N.B. La notation R f ! est abusive en ce que R f ! n’est en général
pas le dérivé d’un foncteur f !.

For this reason I will just denote it by f !, as is already done for instance in
[5].

Dualising complexes So we know that there is some virtue in looking at the
relative context, and that we will obtain an adjoint pair encoding Grothendieck
duality. Another thing we could do is look at the dualising sheaf. Then we can
motivate Grothendieck duality by considering another rather trivial situation:
SpecZ, as was done in [5, §V.1].
There are two ways of taking the dual of an abelian group4:

1. the Pontryagin dual of a finite abelian group, which is given by the func-
tor HomAb(−,Q/Z);

2. the dual of a finitely generated free group, which is given by the func-
tor HomAb(−,Z).

3The functor f∗ in this case is nothing but global sections, as f∗(F) evaluated on Spec k
is Γ( f −1(Spec k),F), see example 29.

4Remark that there is a typo in [5, §V.1], dualising finitely generated free groups requires Z, not Q.
This makes the exposition less miraculous.
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Each applied twice to the correct situation gives a abelian group isomorphic to the
one you started with. We can consider these two dualising functors at the same
time5, by considering the complex

(3.10) . . .→ 0→Q→Q/Z→ 0→ . . .

in Db
fg(Ab), the derived category of bounded complexes inside D+(Ab) whose

cohomology is finitely generated. This 2-term complex is an injective resolution
of Z, as both groups are divisible! So it is isomorphic to Z in Db

fg(Ab), and to
perform computations in the derived category we can interchange them freely.
This yields the following proposition [5, proposition:V.1-1].
Proposition 36. The functor

(3.11) D: Db
fg→ Db

fg : M•→ RHom•(M•,Z)

is a contravariant endofunctor, and there is a natural equivalence

(3.12) η: idDb
fg(Ab)⇒ D◦D.

Hence on the “small” category Db
fg(Ab) sitting inside the bigger D+(Ab) this du-

ality functor is truly a duality. The small category corresponds to the bounded
derived category of coherent sheaves, as by the usual mantra “coherent = finitely
generated.”

Proof of proposition 36. We have

(3.13) Hi(D(M•)) = Hi(RHom•(M•,Z)) = Exti(M•,Z)

hence if M• has finitely generated and bounded cohomology, so has D(M•). We
obtain that D is a well-defined endofunctor.
The natural equivalence is defined in [5, lemma V.1.2] in an obvious way. To check
that it is a natural equivalence: take a free resolution of M•. This means finding a
surjection of a free abelian group onto M• and repeating this process for the kernel
of this map, and so on.
By [5, lemma I.7.1] it suffices to check it for M• = Zr for some r ≥ 1 as we only
care about finitely generated cohomology. But things are additive, hence we can
take r = 1. Now it suffices to observe that

(3.14) Exti(Z,Z) =
¨

Z i = 0

0 i 6= 0

which gives the desired natural equivalence.

3.1.2 The ideal theorem

The first thing we can consider as a form of Grothendieck duality is [5, Ideal
theorem on page 6]. This summarises what one tries to prove to be able to speak of
a “Grothendieck duality result”. After the statement we will collect some contexts
in which we can prove this.

5This is where the lack of a miracle occurs.
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Theorem 37 (Ideal theorem).

1. For every morphism f : X → Y of finite type6 of preschemes7 there is a
functor

(3.15) f ! : D(Y )→ D(X )

such that

a) if g : Y → Z is a second morphism of finite type, then (g ◦ f )! = f ! ◦ g !;

b) if f is a smooth morphism, then

(3.16) f !(G) = f ∗(G)⊗ω,

where ω= Ωn
X/Y is the sheaf of highest order differentials;

c) if f is a finite8 morphism, then

(3.17) f !(G) =HomOY
( f∗OX ,G).

2. For every proper9 morphism f : X → Y of preschemes, there is a trace
morphism

(3.18) Tr f : R f∗ ◦ f !⇒ id

of functors from D(Y ) to D(Y ) such that

a) if g : Y → Z is a second proper morphism, then Trg◦ f = Trg ◦Tr f ;

b) if X = Pn
Y , then Tr f is the map deduced from the canonical isomorphism

Rn f∗(ω)∼= OY ;

c) if f is a finite morphism, then Tr f is obtained from the natural map
“evaluation at one”

(3.19) HomOY
( f∗OX ,G)→ G.

3. If f : X → Y is a proper morphism, then the duality morphism

(3.20) Θ f : RHomX (F, f !(G))→ RHomY (R f∗F,G)

obtained by composing the natural map10 above with Tr f , is an isomorphism
for F ∈ D(X ) and G ∈ D(Y ).

6Recall that a morphism of finite type means that there exists an open affine covering of the
codomain, such that the inverse images of these open sets admit a finite open affine covering, such that
each of these rings is finitely generated over the open affine in the codomain.

7I have left this historic terminology in: what nowadays are called schemes were called preschemes
in the early days of scheme theory. At first the philosophy was that we’d be mostly interested in separated
schemes, which were called schemes, and not necessarily separated schemes were preschemes. In case
you didn’t know this little fact from the history of scheme theory, you know understand references to
preschemes.

8Recall that a morphism is finite if there exists an open affine covering of the codomain such that
the inverse image of each open affine is again affine, and moreover finite as a module over the original
ring.

9Recall that a proper morphism between schemes is like a proper map of topological spaces, where
inverse images of compact sets are again compact. As being compact in a non-Hausdorff context doesn’t
make much sense, algebraic geometers use a different definition of proper: the map f : X → Y between
schemes is said to be proper if it is universally closed (i.e. for all Y → Z is X ×Y Z → Z closed on the
level of underlying topological spaces) and separated (i.e. ∆ f : X → X ×Y X is closed, which is an
analogue of being Hausdorff).

10Obtained as the Yoneda pairing, see [5, page 5].
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So the ideal theorem has 3 main themes:

1. the existence of the adjoint f !;

2. the trace morphism for proper morphisms;

3. the duality for proper morphisms.

The first theme describes the functor f ! in the cases where we know what it should
be. The second theme describes what the counit adjunction should look like, while
the third theme asserts that it actually is an adjunction. Remark that

1. We haven’t specified D(X ).

2. The role of D(X ) will change depending on

a) the type of schemes we are considering;

b) the type of maps we are considering;

c) the theme we are considering.

The question is: in which situations can we prove this ideal theorem? The answer
(as per [5], nowadays it is more general, this will be discussed in the next lecture)
is:

1. noetherian schemes of finite Krull dimensions and morphisms which factor
through a suitable projective space [5, §III.8, §III.10, §III.11]: all statements
are applied for D+qc(−) except the last in which case F lives in D−qc(X );

2. noetherian schemes which admit dualizing complexes (see [5, §V.10], it
implies finite Krull dimension) and morphisms whose fibres are of bounded
dimension [5, §VII.3]: all statements are applied to D+coh(−) except the last
in which case F lives in D−qc(X );

3. noetherian schemes of finite Krull dimension and smooth morphisms [5,
§VII.4]: the results in 1 are applied to D+qc(−), in 2 to Db

qc(−) and in 3 to F

in D−qc(X ) and G in Db
qc(Y );

4. noetherian schemes and arbitrary morphisms [5, appendix], but only state-
ments 1a, 2a and 3: the results are applied to D(Qcoh(−)).

In tables 3.1 and 3.2 we have fitted this information in a nice overview.

Remark 38. The duality morphism (3.20) also has a relative version [2, p. 3.4.4],
which reads

(3.21) Θ f : R f∗RHom•X (F
•, f !(G•))→ RHom•Y (R f∗(F

•), G•).

Taking global sections yields the result mentioned in the ideal theorem.
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3.1.3 What about dualising complexes?

The ideal theorem as stated here does not mention dualising objects. But in the case
of Serre duality we really phrased things in terms of our “magic object” ω◦X which
made the theory work. In the approach to Grothendieck duality of Hartshorne
these dualising objects still play an important role (in the next lecture we will see
approaches in which the role of this explicit object is greatly diminished), and trying
to get a hold on them is the main difficulty. The problem in handling dualising
complexes is that they are objects in the derived category, and there is the usual
mantra that triangulated categories do not allow gluing, so a straightforward local
approach doesn’t work.
In the proof of Grothendieck duality one tries to keep track of what the dualising
object looks like. Recall that in the case of Riemann–Roch this dualising object
was Ω1

C , and in the context of Serre duality we used Ωn
Pn

k/k
for projective space, and

a Ext construction for the general case of a projective variety.
In the situation of Grothendieck duality where we have used derived categories
everywhere one can ask what ω◦X looks like. The answer is given in table 3.3, based
on [5, §V.9].
We observe that the philosophy is “the nicer X , the nicer ω◦X ”.

3.2 Applications of Grothendieck duality

Due to time constraints, both in preparing these notes and actually lecturing about
them, the following list of applications is not as worked out as I want it to be.

3.2.1 The yoga of six functors

Coherent duality The notion of Grothendieck duality that we have seen so far is
in the following situation:

1. (quasi)coherent sheaves;

2. Zariski topology for schemes;

Étale cohomology But one can consider other contexts too. In the study of étale
cohomology we have:

1. torsion sheaves;

2. étale topology for schemes.

Poincaré–Verdier duality In the case of manifolds and locally compact spaces
we have Poincaré–Verdier duality:

1. sheaves of abelian groups;

2. locally compact spaces.
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situation X and Y f

1 noetherian, finite Krull dimension factor through Pn
Y

2 noetherian with dualizing complex
3 noetherian, finite Krull dimension smooth
4 noetherian

Table 3.1: Description of the 4 situations for Grothendieck duality in [5]

property situation D(X ) D(Y )

existence of f ! 1 D+qc(Y )
2 D+coh(Y )
3 Db

qc(Y )
4 D+(Qcoh/Y )

trace morphism 1 D+qc(Y )
2 D+coh(Y )
3 Db

qc(Y )
4 D+(Qcoh/Y )

duality 1 D−qc(X ) D+qc(Y )
2 D−qc(X ) D+coh(Y )
3 D−qc(X ) Db

qc(Y )
4 D(Qcoh/X ) D+(Qcoh/Y )

Table 3.2: Overview of the configuration of the derived categories for each of the
three parts of a Grothendieck duality context

how nice is X? how nice is ω◦X ?

X smooth ω◦X =
∧dim X ΩX [dim X ]

X Gorenstein ω◦X shift of a line bundle by dim X
X Cohen–Macaulay ω◦X shift of a sheaf by dim X

X arbitrary ω◦X is a complex

Table 3.3: Comparison of singularness of X and the look of ω◦X
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Formalism In formalising the properties that are similar in each of these contexts
we see that

• we are considering image functors of sheaves;

• we are using the closed monoidal structure of the category of sheaves.

In the general situation of a “six functors formalism” we can identify the following
functors [1], for f : X → Y a morphism in some category, and C(X ) some category
of sheaves associated to X .

notation name signature

f ∗ inverse image f ∗ : C(Y )→ C(X )
f∗ direct image f∗ : C(X )→ C(Y )
f! exceptional direct image f! : C(X )→ C(Y )
f ! exceptional inverse image f ! : C(Y )→ C(X )

Hom(−,−) internal Hom C(X )×C(X )→ C(X )
−⊗− internal tensor product C(X )×C(X )→ C(X )

Depending on the context the adjective exceptional is sometimes replaced by the
adjectives proper or twisted. The existence of some of the functors is not required
to be universal in f , e.g. the exceptional direct and inverse image are only required
to exist for separated maps of finite type between schemes.
We have relationships between these functors. These are (being a bit sloppy and
not mentioning all of them):

1. the adjunctions: f ∗ a f∗, f! a f ! and −⊗ C aHom(C ,−);

2. the existence of a natural transformation α f : f!⇒ f∗;

3. base change isomorphisms intertwining inverse and exceptional direct image,
and direct and exceptional direct image;

In the situation of coherent duality we moreover have:

1. the adjunction (with some abuse of notation, dropping R)

(3.22) f∗ a f !

if f : X → Y is a proper map between the correct type of schemes11;

2. compatibilities between dualising functors and the image functors (i.e. com-
patibilities between the closed monoidal structure and the relative struture).

Hence we have several possibilities to go continue our study of Grothendieck
duality:

1. develop Grothendieck duality and the six functors as a formal property of
monoidal categories (won’t be done here);

2. develop these five or six functors into an interesting calculus.

This second option is exactly what we’re going to do in the next section. The
compatibilities not mentioned explicitly will return there.

11Rather, we have f∗ = f! in this situation. But in general these are different, so we really have six
functors and not just five.
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3.2.2 Fourier–Mukai transforms

Using this formalism of five (or six) functors we can get an interesting “calculus
of derived functors”. Some of these properties have been stated in the previous
subsection, but we will now repeat them. The goal is to show that on the level
of derived categories one gets lots of compatibilities which can be useful for
computations, especially after we have discussed Orlov’s existence result.
We will consider f : X → Y a morphism of projective schemes over a field k
which is the context of [7]. The following are formal, in the sense that they are
generalisations of the underived formulas.

projection formula

f proper, F• ∈ Db(Coh/X ) and G• ∈ Db(Coh/Y )

(3.23) R f∗(F•)⊗L G• R f∗
�

F• ⊗L L f ∗(E•)
�∼

L f ∗ and ⊗L commute

F•,G• ∈ Db(Coh/Y )

(3.24) L f ∗(F•)⊗L L f ∗(G•) L f ∗(F• ⊗L G•);∼

L f ∗ and R f∗ adjunction

f projective, F• ∈ Db(Coh/X ), G• ∈ Db(Coh/Y )

(3.25) HomDb(Coh/X )
�

L f ∗(G•),F•
�

HomDb(Coh/X )
�

G•,R f∗(F•)
�

;∼

⊗L and RHom adjunction

X smooth and projective, F•,G•,H• ∈ Db(Coh/X )

(3.26)

RHom(F•,G•)⊗L G• ∼= RHom(F•,G• ⊗L H•),

RHom(F•,RHom(G•,H•))∼= RHom(F• ⊗L G•,H•),

RHom(F•,G• ⊗L H•)∼= RHom(RHom(G•,F•),H•);

global sections and RHom

F• ∈ Db(Coh/X )

(3.27) RΓ ◦RHomX (F
•,−) = RHom(F•,−);

L f ∗ and RHom commute

F•,G• ∈ Db(Y )

(3.28) L f ∗
�

RHomY (F•,G•)
�

RHomX
�

L f ∗(F•),L f ∗(G•)
�

;∼
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flat base change

for

(3.29)

Y ′ Y

X ′ X

g

v

f

u

with f proper and u flat, F• ∈ D(Qcoh/Y )

(3.30) u∗ ◦R f∗(F•) Rg∗ ◦ v∗(F•).∼

But as we saw in the description of the general six functor formalism we have
another functor at our disposal: f !.
Or rather, in the context we are working in right now (smooth projective varieties
over a scheme) we work with the dualising sheaf characterising the f !, which
makes things more explicit. So if f : X → Y is a morphism between such schemes
we define explicitly

(3.31) ω f :=ωX ⊗ f ∗(ω∨Y )

and

(3.32) dim( f ) := dim X − dim Y.

This means that f ! is given by

(3.33) f ! : Db(Coh/Y )→ Db(Coh/X ) : F• 7→ L f ∗(E•)⊗Lω f [dim( f )].

Then we get some new compatibilities between our functors on derived categories,
which are just a remanifestation of Grothendieck duality.

Grothendieck duality F• ∈ Db(X ), G• ∈ Db(Y )

(3.34)

R f∗
�

RHom
�

F•,L f ∗(G•)⊗Lω f [dim( f )]
��∼= RHom

�

R f∗(F
•),G•

�

;

R f∗ and f ! adjunction F• ∈ Db(Coh/X ), G• ∈ Db(Coh/Y )

(3.35) HomDb(Coh/Y )
�

R f∗(F•),G•
�

HomDb(Coh/X )

�

F•, f !(G•)
�

.∼

The crux of all this is the following representability result. Recall that a Fourier–
Mukai functor with kernel P• ∈ Db(Coh/X × Y ) is given by

(3.36) ΦP• : Db(X )→ Db(Y ) : F• 7→ Rp∗
�

Lq∗(F•)⊗L P•
�

where Lq∗ = q∗ as p, q are the projections on Y and X respectively. Hence this
is a specific type of functor, given by geometric information. Then we have the
following result, which says that lots of interesting functors are actually Fourier–
Mukai transforms!
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Theorem 39. Let X and Y be smooth projective varieties. Let

(3.37) F : Db(Coh/X )→ Db(Coh/Y )

be a fully faithful exact functor. Then there exists a P• ∈ Db(Coh/X × Y ) such
that F ∼= ΦP• .

Because we can get strong results on Fourier–Mukai transforms (regardless of
whether they are actually representing a functor as in the theorem or not) we have
obtained an interesting “calculus of derived functors”. This is an important area of
current research, from many different perspectives.
Some of the results in [7] which appeal immediately to Grothendieck duality are:

1. an explicit formula for the left and right adjoint [7, proposition 5.9];

2. braid group actions for spherical objects [7, lemma 8.21];

3. the study of flips and flops [7, §11.1];

4. semi-orthogonal decompositions of derived categories [7, §11.2];

5. . . .

3.2.3 The moduli of curves

The paper that introduced stacks to the world [3] also applies Grothendieck duality
right from the start. The goal is to study the moduli space Mg of curves of genus g,
and show that it is irreducible, regardless of the choice of base field.
As they say themselves, the “key definition of the whole paper” is:

Definition 40. Let S be any scheme. Let g ≥ 2. A stable curve of genus g over S is a
proper flat morphism π: C → S whose geometric fibres are reduced, connected,
1-dimensional schemes Cs such that

1. Cs has only ordinary double points;

2. if E is a non-singular rational component of Cs, then E meets the other
components of Cs in more than 2 points;

3. dimH1(OCs
) = g.

So two aspects of Grothendieck duality come to mind: the relative situation, and
the (mild) singularities. We get a canonical invertible sheaf ωC/S on C , where C
will act as a family of sufficiently nice curves to connect any two points in the
moduli space, thus proving irreducibility.
One then proves the following properties of the dualising sheaf:

1. ω⊗n
C/S is relatively very ample for n≥ 3;

2. π∗(ω
⊗n
C/S) is locally free of rank (2n− 1)(g − 1).

The proof of these properties uses the fact that we “almost” get a smooth curve
of genus g, and we study the different irreducible components, together with the
explicit manifestation of Grothendieck duality for curves with at most ordinary
double points.



LECTURE 3. DERIVED CATEGORIES AND GROTHENDIECK DUALITY 38

Hence we can conclude that, taking n = 3, we can realise a stable curve C → S
as a family of curves inside P5g−6 such that the Hilbert polynomial of each point
is (6n− 1)(g − 1).

This yields the construction of a subscheme Hg ⊆ Hilb(6n−1)(g−1)
P5g−6 of tricanonically

embedded stable curves, i.e. the functor described by

(3.38) HomSch(S,Hg)∼=
n�

π: C → S stable; Proj
�

π∗(ω
⊗3
C/S)
�

∼= P5g−6
S

�o

/∼=

for a scheme S. By taking the quotient of the (open locus of smooth curves of
the) scheme Hg by the PGL5g−6-action we obtain a model for the moduli space of
(smooth) curves, and hence we can try to compute things.
From this point on the proof does not use Grothendieck duality anymore, so I will
end the summary here.

3.2.4 Other applications

Each of the following applications more than deserves a proper treatment. Unfortu-
nately this is not possible here, due to lack of time, space and familiarity with the
subject. They are here to show how diverse applications of Grothendieck duality
can get. Any error in this list is due to my limited knowledge on the subject.

Local duality The study of local rings and singularities leads to working with
Cohen–Macaulay rings and modules, and understanding these in as concrete terms
as possible. It is related to representation theory as well.

Singularity categories This is another approach to studying singularities, now in
a more global setting. It is similar to the previous application in some respects, but
more alike studying Fourier–Mukai transforms and derived categories in others.

Noncommutative algebra The notion of dualising complex has a counterpart
for noncommutative rings.

Noncommutative algebraic geometry The notion of Serre and Grothendieck
duality leads to studying abstract Serre functors in triangulated or dg categories.
This is also related to Calabi–Yau categories.

Arithmetic geometry The relative formalism also applies to arithmetic geometry,
for example in studying Eisenstein ideals [8]. I know absolutely nothing about it.
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Lecture 4

Sketches of some of the proofs

Abstract

These are the notes for my fourth and final lecture on Grothendieck duality in
the ANAGRAMS seminar. They are dedicated to an overview of some of the
proofs in the literature. They are significantly more detailed than the exposé in
the seminar. I describe:

1. Hartshorne’s geometric proof,

2. Deligne’s pro-objects categorical proof,

3. Neeman’s proof based on Brown’s representability,

4. Murfet’s proof based on the mock homotopy category of projectives;

while the approaches by Lipman and Yekutieli–Zhang are merely mentioned.
The goal of discussing these approaches is to highlight the two main contrasting
aspects of Grothendieck duality:

1. local versus global;

2. categorical versus geometric.

The interplay of these makes the study of Grothendieck duality so interesting.

Contents
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4.1 Hartshorne’s proof: dualising and residual complexes

4.1.1 Introduction

The first proof of Grothendieck duality was given by Robin Hartshorne in 1966 [7],
based on notes provided by Alexander Grothendieck in 1963. As the statement and
proof require the use of derived categories, Jean–Louis Verdier’s ongoing (at the
time) work was included in the first two chapters of the book, and it was (as far as
I can tell) the first published treatise of derived categories.

Issues with the proof This approach is the most geometric of them all, but also
the most complicated. To quote Amnon Neeman [16]:

[. . . ] Since derived categories are basically unsuited for local computa-
tions, the argument turns out to be quite unpleasant.

If one reads the proof as outlined in [7] this will become clear: after introducing
the required notions of derived categories in algebraic geometry (the first 100
pages) the proof takes 250 pages. These 250 pages also only summarise many
important results on local cohomology and depend heavily on technical results in
the EGA’s.
Moreover, the proof from [7] is incomplete, and contains errors. Regarding the
incompleteness the author himself says in [7, §II.5]:

Now these examples are only three of many more compatibilities which
will come immediately to the reader’s mind. I could make a big list,
and in principle could prove each one on the list. [. . . ] And since the
chore of inventing these diagrams and checking their commutativity
is almost mechanical, the reader would not want to read them, nor I
write them. [. . . ]

Hence the reader is left with checking lots and lots of commutative diagrams, some
of them depending on very subtle sign conventions in homological algebra!
Besides these intentional omissions there are some mistakes in the proofs. Nothing
that can’t be fixed though.

Trace maps and base change There is an important omission from the proof:
the compatibility of the trace map for smooth morphisms with arbitrary base
change. If f : X → Y is a proper, surjective, smooth map of schemes whose fibers
are equidimensional of dimension n, then we had the trace map [7, §VII.4]

(4.1) γ f : Rn f∗(ωX/Y )→ OY

which is an isomorphism if f has geometrically connected fibers. Now let

(4.2)

X ′ X

Y ′ Y

v

g f

u
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be a cartesian diagram, then we get an isomorphism

(4.3) u∗
�

Rn f∗(ωX/Y )
�

→ Rn g∗
�

v∗(ωX/Y )
�∼= Rn g∗(ωX ′/Y ′).

The desired compatibility then asserts that

(4.4)

u∗
�

Rn f∗(ωX/Y )
�

Rn g∗(ωX ′/Y ′)

u∗(OY ) = OY ′

∼=

u∗(γ f )

γg

is a commutative diagram. A nice discussion of the state of this base change
compatibility can be found in [3, §1.1]. To summarise: the proof is left to the
reader in [7, §VII.4], and its proof is highly non-trivial, which brings us by [3].

Companion to the proof The book [3] is written as a complement to the original
proof, providing information on the omissions and fixing the numerous mistakes
in the original proof. As the theory of derived categories was in its infancy, many
things were still unclear, and this caused errors. Some of these are trivial to fix,
others are severe and require a completely different proof. And to top things of:
some (minor) mistakes have been found in Brian Conrad’s book, but these don’t
require difficult fixes and a detailed erratum is available.
In total, one understands that if the proof and a companion to the proof take about
500 pages, it’s hardly an easy proof.

4.1.2 Outline of the proof

Summarising 500 pages of proof is a rather non-trivial task to do, but I will try
to outline my view on the proof and its structure. Hopefully this helps in tackling
the proof, and identifying which parts could be of interest to the reader. I will do
this by summarising the different chapters, later on some interesting points will be
highlighted in separate paragraphs.
As mentioned before (but maybe not explicitly enough): this (geometric) approach
to Grothendieck duality can be summarised by the following slogan.

We define f ! by looking for a dualising complex and defining the functor
in terms of this complex.

The whole setup of the book should be considered in this point of view.

chapters 1 and 2 As derived categories were still in their infancy and there was
not a published text available about them, they are first introduced and then
applied to the situation of schemes. For a more up-to-date introduction one
can look at [8, chapters 1–3].

chapter 3 The proof of Grothendieck duality for projective morphisms. In this
“easy” case we can do more explicit computations, and control the dualising
object. The idea is to factor sufficiently nice morphisms (see section 4.1.3)
into
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1. smooth morphisms,

2. finite morphisms;

and introduce the functor f ! for each of these. The functor f ! for a finite
morphism is denoted f [, the one for a smooth morphism is f ].

By checking compatibility of these two definitions (which are suggested by
the Ideal theorem, as given in the previous lecture) one obtains a theory
of f ! for these nice morphisms [7, theorem III.8.7] (but not all the required
properties for f !). This is then used to obtain Grothendieck duality for
projective morphisms [7, §III.9, III.10].

A similar idea of factoring morphisms into tractable ones occurs in section 4.2.

chapter 4 As discussed in the section on applications of Grothendieck duality there
is an interesting notion of local duality, related to local cohomology. Before
tackling global Grothendieck duality one has to understand what happens in
the local case, as this is what is used to characterise the objects defined in
the next chapters.

Historically, local duality is treated in [SGA2] and [6]. Remark that this
second book are the notes (by Hartshorne) of a seminar (by Grothendieck)
on local duality, and are originally from 1961, the same period as SGA2
(which was done in 1961–1962).

chapter 5 Recall that this approach to Grothendieck duality can be summarised
by the following slogan.

We define f ! by looking for a dualising complex and define the
functor in terms of this complex.

But the statement of Grothendieck duality doesn’t mention dualising com-
plexes explicitly. Hence it is not required to develop this machinery if one is
looking for f !, but it does give an explicit flavour to it. Moreover, this is the
approach taken in the proof, so we do require some understanding of it.

In this chapter the machinery and properties of dualising complexes are
discussed. The goal is to understand how dualising complexes relate to
local duality, how this behaves with respect to singularities and how we can
interpret the dualising complexes. Some of these properties are discussed in
section 4.1.4.

chapter 6 Unfortunately, dualising complexes live in a derived category, and this
is a non-local object [7, page 193]. To solve this problem residual complexes
are introduced. These are a manifestation of dualising complexes in the non-
derived category of chain complexes. A nice motivation for having a theory
for both dualising and residual complexes is given on [3, pages 106–107]. In
the case of a curve C these two manifestations are

1. the dualising complex Ω1
C/k[1] (familiar from Riemann–Roch!);

2. the residual complex

(4.5) . . .→ iξ,∗

�

Ω1
X/k,ξ

�

→
⊕

x∈X 0

ix ,∗

�

Ω1
X/k,ξ/Ω

1
X/k,x

�

→ 0→ . . .

where ξ is the generic point of C .
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These complexes are quasi-isomorphic to eachother, but the residual complex
is a bunch of injective hulls taken together, which can be taken to live in a
non-derived category and still allow for computations. For more information
on the definition see section 4.1.5.

Now a theory for embeddable morphisms and residual complexes is devel-
oped, using functors f y and f z for finite and smooth morphisms1. Their
definitions depend on (pointwise) dualising complexes, but they are truly
functors on the non-derived level. This chapter is the technical part of the
book, which lots of compatibility checks.

chapter 7 In this chapter Grothendieck duality in its general form is finally proved.
We have obtained many preliminary results, and this allows us to summarise
the final proof [7, theorem VII.3.3] as follows:

1. Grothendieck duality for RHom is local (and it implies the other state-
ments), hence we reduce Y to the spectrum of a local ring (so the base
is affine).

2. By some machinery of derived categories we can replace the complex
by a single quasicoherent sheaf on X .

3. We can replace the quasicoherent sheaf on X by a coherent one using a
direct limit argument.

4. As Y is affine the local statement for RHom becomes a global statement
for RHom.

5. We check compatibility of the global statement with composition of
two morphisms (this is not a part of the conceptual flow of the proof
in my opinion). This is where residual complexes are required. One of
the compatibilities requires a coherence condition, which explains the
reduction in the third step.

6. Using noetherian induction on X we can assume that the theorem is
proven for every g : Z → Y where i : Z → X is a closed immersion
with Z 6= X and g = f ◦ i.

7. As X is proper over Y we apply Chow’s lemma to find an X ′ which is
projective over Y and a morphism g : X → X ′ which is an isomorphism
over some non-empty open subset U . By the noetherian induction we
can assume the theorem proven for the complement, which allows us
to reduce the statement to the projective morphism in the factorisation
of Chow’s lemma.

8. Now we can apply the results we had for projective morphisms, and
conclude.

The remainder of the chapter is dedicated to spelling out the trace map and
making the duality result more explicit for proper smooth morphisms.

4.1.3 Embeddable morphisms

To proof Grothendieck duality one first proves it for embeddable morphisms.

1You are right, this is really weird notation.
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Definition 41. Let S be a base scheme. A morphism f : X → Y is embeddable
(over S) if there exists a smooth scheme P (over S) and a finite morphism

(4.6) i : X → PY = P ×S Y

such that f = p2 ◦ i.

Exactly how useful is this definition?

1. If f : X → Y is finite then f can be factored through P = S.

2. If f : X → Y is projective, where Y is quasicompact and admits an ample
sheaf, then f can be factored through some P = Pn

Y [EGA II, II.5.5.4(ii)].

The main issue is that morphisms of finite type (a very general class of morphisms)
are locally embeddable, but not globally so. Hence this approach does not yield a
theory of f ! in general. To overcome this issue we need the notion of dualising and
especially residual complexes.

4.1.4 Dualising complexes

Recall from the description of duality on SpecZ (see the previous lecture) that we
had a “bounded complex of quasicoherent sheaves with coherent cohomology”.
In this case all the highbrow terminology boils down to “a bounded complex of
abelian groups with finitely generated cohomology”. As the complex we considered
was an injective resolution of Z this condition is clearly satisfied.
By considering this particular complex we obtained a duality functor

(4.7) D: M•→ RHom•(M•,Z)

for M• an object in Db
fg(Ab) = Db

coh(SpecZ), i.e. applying the dual twice yields
something functorially isomorphic to what you started with. This is completely
analogous to the case of vectorspaces: one has to start with a finite-dimensional
one to get the double dual isomorphic to the original one.
Generalising this we get to the following definition.

Definition 42. Let X be locally noetherian. A dualising complex is a complex R• ∈ D+coh(X )fid
such that for each F• ∈ D(X ) the morphism

(4.8) η: F•→ D◦D(F•) = RHom• (RHom(F•,R•),R•)

is an isomorphism.

As is fashionable in algebraic geometry, we have turned our problem into a defini-
tion. But this is a remarkably interesting definition, as we can observe the following
properties:

1. the complex R• is quasi-isomorphic to a bounded complex of quasicoherent
injective sheaves, hence we get that D: D(X )→ D(X ) sends Db

coh(X ) to itself,
and it interchanges D+coh(X ) and D−coh(X );

2. if X is regular of finite Krull dimension then OX is already a dualising complex
[7, example V.2.2];
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3. one can check whether R• is dualising at all the stalks of closed points of X
[7, corollary V.2.3];

4. dualising complexes are preserved by f [ and f ] [7, proposition V.2.4 and
theorem V.8.3], hence for embeddable f we get that f ! preserves dualis-
ing complexes, and this means that we can compute f ! by the following
isomorphism

(4.9) f !(F•)∼= DX ◦ L f ∗ ◦DY (F
•)

with

(4.10)
DX (−) := RHom•X (−, f !(R•))
DY (−) := RHom•Y (−,R•)

if R• is a dualising complex on Y and f : X → Y is embeddable [7, proposition
V.8.5];

5. if more generally f is of finite type with Y noetherian and R• a dualising
complex on Y then f !(R•) will be one on X ;

6. dualising complexes are unique up to tensoring with invertible sheaves and
shifts [7, theorem V.3.1].

Regarding the question of its existence, one has the following necessary and suffi-
cient conditions [7, §V.10]:

Sufficient conditions Hence, under which conditions can we prove the existence
of a dualising complex?

1. X Gorenstein and of finite Krull dimension.

2. X of finite type over Y with Y admitting a dualising complex (which has X
of finite type over a field k as a special case, hence we get Serre duality for
arbitrary singularities).

Necessary conditions Hence, what properties of X does the existence of a dual-
ising complex imply?

1. X has finite Krull dimension.

2. X is catenary.

As the proof of Grothendieck duality by constructing an explicit formula for f !

depends on dualising complexes, one could hope for a more general result by
taking a different approach. This will be discussed later on. First we have to discuss
how one can use local duality and dualising complexes to obtain a global theory.
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4.1.5 Residual complexes

The problem is that we cannot glue dualising complexes together, as the derived
category is not a local object [7, page 193]. Hence we need to do some work to
use our dualising complexes from the previous paragraph and obtain f !.
The idea is to take a dualising complex R• ∈ D+coh(X ) and turn it into an actual
complex (i.e. in some Ch(X )) which will be called the residual complex.
As we can glue actual complexes together, we can obtain a f ! by gluing residual
complexes together. Of course, we need to know that it doesn’t matter whether
we use dualising complexes or residual complexes. I.e. we will look for a func-
tor E: D+coh(X ) → Ch+coh(Qcohinj/X ) such that Q◦E(R•) ∼= R•, where Q is the
quotient functor in the construction of the derived category, and Ch+coh(Qcohinj/X )
is a model for D+coh(X ).
The definition of a residual complex seems odd at first sight.

Definition 43. Let X be a locally noetherian prescheme. A residual complex K•

on X is a bounded below complex of quasicoherent injective OX -modules with
coherent cohomology, together with an isomorphism

(4.11)
⊕

p∈Z

Kp ∼=
⊕

x∈X

J(x)

where J(x) is the quasicoherent injective OX -module given by the constant sheaf
with values in an injective hull of k(x) over OX ,x on cl({x}), and zero elsewhere.

The reason why this definition is interesting can be deduced from [7, proposition
V.3.4], which gives a description of dualising complexes in the stalk. This description
is given by a purity result for Ext-functors, hence considering these rather special
residual complexes which are constructed from injective hulls makes sense.
The functor E uses the theory of Cousin complexes, and this is based on suitable
filtrations of X . For more information, see [7, chapter IV].
This “equivalence” of residual and dualising complexes is one of the subtle points
in the proof, and things are not correct the way they are stated. For a discussion
of the problems, and a solution, see the discussion around [3, lemma 3.2.1]. This
is where the main technical part of the proof is found [7, §VI.2–VI.5]. It requires
checking lots and lots of commutative diagrams, and this is one of the reasons for
the existence of [3].

4.2 Deligne’s proof: go straight for the right adjoint

4.2.1 Introduction

If one wishes to settle for a Grothendieck duality theory, without dualising and
residual complexes, it is possible to prove the existence of the right adjoint f ! by
other means [4, 17]. One can then show that the remaining aspects of Grothendieck
duality follow from the existence of this adjoint.
The idea for this approach comes from Verdier duality, which is a generalised
Poincaré duality for topological spaces. It is possible to obtain the results in an
almost formal way, if one has a good theory of “cohomology with proper support”.
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4.2.2 Nagata’s compactification theorem

The main idea in Deligne’s approach is to replace the morphism f : X → Y by
more tractable ones. As in the case of general topology it is often easier to prove
something for compact spaces. The notion of compactness (in the usual sense, often
denoted quasicompactness) is only mildly interesting, and does not suffice to prove
Grothendieck duality. The correct notion of compactness is properness. So we make
the following definition.

Definition 44. Let f : X → Y be a morphism of schemes. It is compactifiable (in the
terminology of [7, appendix]) if there exist morphisms g : X → X and h: X → Y
such that

(4.12)

X Y

X

f

g h

such that

1. g is an open immersion;

2. h is proper.

The question now becomes: which morphisms are compactifiable? The answer is
very interesting, and given by the following theorem [15, 14, 2].
Theorem 45 (Nagata’s compactification theorem). Let f : X → Y be separated
and of finite type between quasicompact and quasiseperated schemes. Then f is
compactifiable.

Hence this suffices to obtain the existence of f ! in a very general context, e.g.
noetherian schemes.
Remark that the history of this theorem is intriguing: it was proved in 1962, but
in the language of Zariski–Riemann spaces and valuations, which is algebraic
geometry in the sense of Zariski and Weil. Hence the proof nor the statement were
known in the language of schemes. This has now changed [12, 2, 5]. This result
would be an interesting topic for another series of lectures in the seminar.

4.2.3 Outline of the proof

Using this notion of compactifiability he defines a functor f! (or R f!, depending on
the notation, but it is not a derived functor) which is related to R f∗. Then using
a result by Verdier [18] we get a right adjoint f ! for R f∗. Then he proves that f!
and f ! are adjoint to eachother (in the context of pro-objects), and deduces some
properties. For more deductions on the properties of f ! see [17].
A similar approach is by the way taken to define f! and f ! in the context of étale
cohomology [SGA43, exposé XVII].
Remark that this approach is completely orthogonal to the approach outlined in the
previous section:

We prove the existence of f ! and afterwards try to interpret dualising
complexes.
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4.3 Neeman’s proof: Brown’s representability theorem

4.3.1 Introduction

The previous two approaches have in common that at some point one takes a
factorisation of a morphism into two specific types of morphisms, proceeds to
obtain Grothendieck duality for each type separately, and then glues these together
by checking compatibility and independence of the choice of factorisation. What if
we could get rid of this?
This is done in Neeman’s approach [16]: we are looking for a right adjoint to a
functor between triangulated categories. We don’t have to consider the underlying
morphism inducing this functor. By using an abstract result it is possible to obtain
the existence of this functor immediately! The reason why this (easy, but formal)
approach took so long is that one has to use ideas (or tools) from topology and
apply them to study triangulated categories.

4.3.2 Existence of adjoint functors

The general result that we wish to apply is Brown representability. The shape it
takes in our case is the following:

Theorem 46 (Brown representability). Let T be a compactly generated triangulated
category. Let H : Top → Ab be a homological functor, i.e. it is contravariant and
takes triangles to long exact sequences. Suppose furthermore that

(4.13) H

 

∐

λ∈Λ

tλ

!

→
∏

λ∈Λ

H(tλ)

is an isomorphism for all small coproducts. Then H is representable.

This representability means we can write H as HomT(−, t) for some t ∈ T. Given
this result, the adjoint functor theorem for compactly generated triangulated
categories becomes really easy:

Theorem 47. Let S be a compactly generated triangulated category, T be a trian-
gulated category, let F : S→ T be a triangulated functor, suppose that F respects
coproducts, i.e. the natural maps

(4.14) F(sλ)→ F

 

∐

λ∈Λ

sλ

!

turn F(
∐

λ∈Λ sλ) into a coproduct. Then F admits a right adjoint G : T→ S.

Proof. We consider the homological functor HomT(F(−), t), for each t ∈ T. This
functor is representable by Brown representability, hence we find an object G(t) ∈ T

such that

(4.15) HomT(F(−), t)∼= HomS(−, G(t)).

To apply this theorem, we need to know that D(Qcoh/X ) is compactly generated.
This is the case if X is quasicompact and separated. Remark that we have removed
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the bounded below conditions that were so pervasive before. This is crucial in this
approach to Grothendieck duality! So then we apply this argument to separated
morphisms between quasicompact and separated schemes, to obtain Grothendieck
duality almost for free by categorical nonsense.
Hence this approach is again completely orthogonal to the original approach by
Hartshorne: one looks for a functor f ! and then deduces properties of this functor
and the related notion of dualising complexes.

4.4 Murfet’s proof: the mock homotopy category of projectives

4.4.1 Introduction

So far we have had a geometric approach and two categorical ones. By using
the mock homotopy category of projectives Murfet tries to reconcile the two a
little (albeit it still firmly rooted in an abstract language). It is based on several
interesting observations.
This approach promises interesting generalisations and new insights, e.g. it is
possible to prove Grothendieck duality for sufficiently nice Artin stacks, or look for
noncommutative interpretations of Grothendieck duality.

4.4.2 Sketch of the ideas

On the injective side In [10, §6] Henning Krause realises Grothendieck duality
at a stage before derived categories by appealing to Neeman’s application of Brown
representability and the following facts:

1. for X a noetherian separated scheme we can write

(4.16) D(Qcoh/X )∼= K(Inj/X )/Kac(Inj/X );

2. for X a noetherian separated scheme we have

(4.17) Db(Coh/X )∼= K(Inj/X )c

(i.e. the compact objects constitute the derived category of interest).

If one has seen model categories before: this is in the spirit of the injective model
structure, we consider the subcategory of fibrant–cofibrant objects as a model for
the derived category, and in this explicit form we can do computations. So f ! now
lives on the level of K(Inj/X ) and K(Inj/Y ).

On the projective side In [9] Peter Jørgensen realises Grothendieck duality at
a stage before derived categories by appealing to Neeman’s application of Brown
representability and the following facts:

1. for X a noetherian affine scheme we can write

(4.18) D(Qcoh/X )∼= K(Proj/X )/Kac(Proj/X );

2. for X a noetherian affine scheme we have

(4.19) Db(Coh/X )op ∼= K(Proj/X )c

i.e. the compact objects constitute the derived category of interest).
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The awfully strict condition in this case immediately brings us to the next observa-
tion.

Flat versus projective

1. there are not enough projective objects on a non-affine scheme;

2. the homotopy category of projective objects in the affine case has the follow-
ing model:

(4.20) K(Proj/X )∼= K(Flat/X )/Kpac(Flat/X )

where the index pac means the “pure acyclic flat complexes”, i.e. the ones
that are acylic complexes of flat sheaves that remain acyclic after tensoring
with a sheaf (the purity can be characterised as having flat kernels for all the
differentials).

In the case of a non-affine scheme X we could mimick this definition, and set

(4.21) Km(Proj/X ) := K(Flat/X )/Kpac(Flat/X ).

This mock homotopy category of projectives has all the good properties, similar to
the ones of K(Inj/X ), agrees with the homotopy category of projectives in the affine
case and has interesting information in the non-affine case. For more information
on the motivation, see [13, chapter 1].
Hence we can now state Grothendieck duality as follows.

Theorem 48 (Grothendieck duality). Let X be a noetherian separated scheme.
Let I be a bounded-below complexe of injective quasicoherent sheaves. Then we
have a diagram

(4.22)

Db(Coh/X )op Db(Coh/X )

Kmock(Proj/X ) K(Inj/X )

RHom(−,I)

I⊗−

where the vertical inclusions are the inclusions of the compact objects. This diagram
is well-defined, commutes and has equivalences horizontally if and only if I is a
(pointwise) dualising complex.

Hence we have restated Grothendieck duality in terms of homotopy categories and
compact objects.

4.5 Other proofs

4.5.1 Rigid dualising complexes

Based on a generalisation of the notion of dualising complexes to noncommutative
algebra [1] by Michel van den Bergh it is possible to introduce the notion of a rigid
dualising complex [20], as was done by Amnon Yekutieli and James Zhang. The
notion of rigidity is encountered in other areas of algebraic geometry as well: the
idea is to add more structure to an object, to kill its automorphisms. Examples
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of these are level structures on elliptic curves, marked points on curves, fixing a
special isomorphism (instead of just requiring that there is one), . . . They also
argue that the cumbersome proofs in [7] are due to a lack of rigidity.
After introducing the notion of a rigid dualising complex the theory goes along
similar lines: we treat finite and smooth morphisms separately and apply the same
type of reduction to studying residues over P1

k [19]. This article seems to be forever
in preparation, only a preprint is available.
There is also a noncommutative analogue of this approach.

4.5.2 Pseudo-coherent complexes

One is invited to read [11]. As far as I can tell it is mostly a technical improvement,
to put techniques from [SGA6] to good use, and less of a radically new approach.
The notes themselves are really nice, and they give a good background to derived
categories. I hope to get back to this approach at some point and understand the
main difference(s) with other approaches.

4.5.3 More?

Maybe there are more proofs available. But as far as I can tell, these are the
main approaches. In the 80ties some work has been done, but these seem to be
refinements, not alternative proofs. Feel free to contact me if you have anything to
tell.
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