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1 Grothendieck topologies

1.1 Motivation

Around 1950 the Zariski topology was introduced in algebraic geometry, in order to
have a topology that is appropriate for the objects (i.e. varieties) that were studied,
unlike the Euclidean topology. In the late 1950s this was generalized to schemes.

In 1949 Weil had proposed conjectures, now named after him, relating prop-
erties of algebraic varieties over finite fields to the topological properties of their
counterparts over C. These conjectures have been discussed before in class, and the
case of curves has been proven.

At some point it was realized that the existence of a “Weil cohomology theory”,
mimicking the properties of algebraic topology, can solve the Weil conjectures.
This observation is probably due to Serre, who attributes it himself to Weil. But
in algebraic topology one often uses constant sheaves. Unfortunately the Zariski
topology is not adapted to these sheaves as the following proposition shows.

Proposition 1. Let X be an irreducible topological space. Let F be a constant sheaf
on X . Then

(1) Hi(X ,F) = 0

for i ≥ 1.

Proof. Every nonempty open set U of X is connected, so F is a flabby sheaf. Therefore
all higher cohomology vanishes.

This applies in particular to (irreducible) schemes with the Zariski topology.
So we conclude that to define a topology on a scheme which gives a meaningful
cohomology theory for constant sheaves we need to find something different.

When discussing the motivation for the étale topology in section 2.1 another
bad property of the Zariski topology is given. But remark that the Zariski topology
is already the good topology to calculate the so-called coherent cohomology of
quasicoherent sheaves: these cohomology groups will be isomorphic for all the
subcanonical topologies discussed in section 1.5.

1.2 Definitions

The notion of a Grothendieck topology is a very natural one (albeit maybe in
hindsight). To realize this we consider the basic definitions of sheaf theory. Recall
that a presheaf F on a topological space X is an assignment

(2) U 7→ F(U)

of sets (or (abelian) groups, rings, modules, . . . ) to every open set U of the space,
together with restriction morphisms resV,U for V ⊆ U . In the functorial language
this is nothing but a functor on the category of open sets of X , where morphisms
correspond to inclusions.

A sheaf is a separated presheaf satisfying the glueing property, i.e. it is com-
pletely determined by its local data. The separatedness implies that for every open
cover U =

⋃

i∈I Ui and sections f , g ∈ F(U) such that for all i we have f |Ui
= g|Ui

we
have f = g globally. And the glueing condition says that if we are given U =

⋃

i∈I Ui
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and sections fi ∈ F(Ui) such that fi |Ui∩U j
= f j |Ui∩U j

then there exists a section f
on U restricting to fi on each Ui .

Again, this can be interpreted in purely categorical terms: intersections are
actually fiber products, and the glueing property can be taken as the exactness of
the equaliser

(3) F(U)→
∏

i∈I

F(Ui)⇒
∏

i, j∈I

F(Ui ×U U j)

if the category of values of F has products. So there is no need to restrict oneself to
topological spaces for sheaf theory: as long as the category shares some properties
with the category of open sets of a topological space (or rather: gives information
similar to open covers!) one can generalize without any problem.

Definition 2. Let C be a category. A Grothendieck topology on C consists of sets of
morphisms {Ui → U} which are called covers for each object U such that

1. if V → U is an isomorphism the singleton {V → U} is a cover;

2. if {Ui → U} is a cover, and V → U is a morphism, then all the fibered
products Ui×U V exist, and set of induced projections {Ui×U V → V} is again
a cover;

3. if {Ui → U} is a cover, and for each i we have a cover {Vi, j → Ui} then the set
of compositions {Vi, j → U} is again a cover.

When a category C is equipped with a Grothendieck topology we call it a site.

These axioms don’t describe a topology using open sets, but in terms of covers.
In the classical notion of a topology one needs to check that the given description of
its open sets satisfies some properties with respect to intersections and unions. In
the case of a Grothendieck topology on the other hand one considers preservation
under base change and composition. Some examples in algebraic geometry come to
mind: open immersions, étale morphisms, smooth morphisms, . . .

Remark that the terminology (which is the one found in [ALB73, definition
1.1.1]) doesn’t completely agree with the terminology in [SGA31; SGA41]. Just like
different bases for a topological space can induce the same topology, this definition
defines what is called a pretopology. Different pretopologies can induce the same
topology, and hence the associated sheaf theory on the sites is the same.

1.3 First examples

Example 3. Take a topological space X . The category of its open sets, i.e. the objects
are open sets and arrows are inclusions, is equipped with a Grothendieck topology.
To each open subset U of X we associate the collection of open covers of U . Fibered
products of inclusions are intersections.

So the objects act (or in this case: are) “open sets”, but the most important thing
are the morphisms. These describe “how” the “open set” is “contained” in the space.

This is a so called “small” example. We can also equip the whole category of
topological spaces (or schemes) with a Grothendieck topology. To do so we first
introduce an important notion.

Definition 4. Let {Ui → U} be a cover in a site in which set-theoretic unions make
sense (topological spaces, schemes, . . . ). It is jointly surjective if the set-theoretic
union of the images equals U .
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Now we can change our focus to algebraic geometry.

Example 5. The small Zariski site of a scheme X is the category XZar which is the
full subcategory of Sch/X of objects U → X that are open immersions equipped
with a Grothendieck topology by defining a cover {Ui → X } to be a jointly surjective
set of open embeddings.

And we also have a bigger version.

Example 6. The big Zariski site (Sch/X )Zar of a scheme X is the category Sch/X
equipped with a Grothendieck topology by defining a cover {Ui → U} to be a jointly
surjective set of open embeddings.

There are also the étale versions.

Example 7. The small étale site of a scheme X is the category Xét which is the
full subcategory of Sch/X of objects U → X that are étale and locally of finite
presentation equipped with a Grothendieck topology by defining a cover {Ui → X }
to be a jointly surjective set of étale morphisms. If U → X and V → X are two
objects of Xét every arrow U → V in Xét is necessarily étale.

Remark 8. If one takes X = Spec k the small étale site yields already interesting
properties. In case of the Zariski topology there is only one open set, the space itself.
But if k is not separably closed we can consider a separable extension and this yields
an étale morphism, which is immediately jointly surjective, so it yields a cover. We
can also consider products of separable extensions. Hence studying the small étale
site of a point is equivalent to studying (products of) separable extensions and their
tensor products, which is exactly what Galois cohomology is about.

Example 9. The big étale site (Sch/X )ét of a scheme X is the category Sch/X
equipped with a Grothendieck topology by defining a cover {Ui → U} to be a
jointly surjective set of étale morphisms that are locally of finite presentation.

One might feel uncomfortable with the existence of two different sites, the
small one containing the “opens” of X while the big one contains strictly more
information. But at least for the Zariski and étale topology there is no difference in
the cohomology groups (after we’ve introduced sheaf theory and sheaf cohomology).
Remark also that for some topologies there is no small site (for instance the cdh
topology, introduced in section 1.5).

1.4 Sheaves on Grothendieck topologies

A sheaf on a topological space is a contravariant functor from the category of its open
sets to some interesting category, satisfying some glueing data. This immediately
generalizes to sheaves on sites as follows.

Definition 10. Let C be a site. Let F : Copp→ Set be a functor, or presheaf.

1. We call F a separated presheaf if for every cover {Ui → U} and for all sec-
tions f , g ∈ F(U) whose pullbacks to F(Ui) are equal, we have the equal-
ity f = g.

2. We call F a sheaf if it is separated and for every cover {Ui → U} and for all
sections fi ∈ F(Ui) such that pr∗1( fi) = pr∗2( f j) in F(Ui ×U U j) there exists a
section f of F(U) such that it restricts to fi on F(Ui).

Remark that these conditions are equivalent to the exactness of the equaliser diagram
in (3), while for separatedness we only need the injectivity of the first arrow.
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By applying the forgetful functor we can consider sheaves of groups, rings,
etc. And remark that for a general site we don’t have equality of the projec-
tions Ui ×U Ui → Ui , unlike the classical topological case where Ui ∩ Ui = Ui .
An example of this can be found in (12) This yields some counterintuitivity in
certain sites.

The following definition explains the terminology used in [SGA41; SGA42;
SGA43]. It is almost never used to its full extent in the later literature on étale
cohomology as this level of generality is not necessary. For completeness’ sake we
define it.

Definition 11. Let C be a category. If C is equivalent to the category of sheaves on
some site then it is called a topos.

There is moreover a characterisation available in categorical properties, see
[SGA41, théorème IV.1.2]. Remark that we should also be careful about the universes
relative to which we are working. The interested (or masochistic) reader is referred
to [SGA41].

1.5 More examples

In this section a non-exhaustive list of Grothendieck topologies on categories of
schemes is given, and they are compared. We have already introduced the Zariski
and étale topology in section 1.2. We can now introduce a closely related one.

Example 12. The big smooth site (Sch/X )sm of a scheme X is the category Sch/X
equipped with a Grothendieck topology by defining a cover {Ui → U} to be a jointly
surjective set of smooth morphisms that are locally of finite presentation.

This topology is close to the étale topology, because its associated topos is the
same as the étale topos [Stacks, tag 055S].

The following topologies are both called flat topologies, and they only differ in
the finiteness conditions that are used. They are used in for example descent theory
and the theory of algebraic stacks.

Example 13. The big fppf site (Sch/X )fppf of a scheme X is the category Sch/X
equipped with a Grothendieck topology by defining a cover {Ui → U} to be a
jointly surjective set of flat morphisms that are locally of finite presentation. The
abbrevation fppf signifies “fidèlement plat et de présentation finie”.

Example 14. The big fpqc site (Sch/X )fpqc of a scheme X is the category Sch/X
equipped with a Grothendieck topology by defining a cover {Ui → U} to be a
set of maps such that

⊔

Ui → U is a faithfully flat morphism such that every
quasicompact open subset of U is the image of a quasicompact open subset of

⊔

Ui .
The abbreviation fpqc signifies “fidèlement plat et quasi-compacte”.

An important type of (pre)sheaves are the representable (pre)sheaves. Given an
object C in a category C we can always consider the morphisms HomC(−, C) into
that object. This yields a presheaf of sets (or groups, if C is a group object, etc.), and
one could ask himself whether it is a sheaf. We have the following theorem which is
at the heart of descent theory.

Theorem 15. Let X be a scheme. A representable functor on Sch/X is a sheaf in the
fpqc topology.

So it is also a sheaf in any weaker topology, especially the Zariski topology. The
topology such that every representable functor is a sheaf is called canonical, any
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weaker topology is subcanonical.
We can compare these (and many other) topologies in the diagram of figure 1.

This comparison is based on [1112.5206; Gei06; Voe96; SV96; Stacks; Sch12].
Some remarks on this diagram:

1. The main stem of topologies on the left is discussed in [Stacks, tag 03FE].
The most important ones have been introduced in this text, the others are
discussed in [Stacks].

2. We observe that there are many non-subcanonical topologies, i.e. not every
representable functor is a sheaf in these topologies. These topologies are
mostly used in a motivic and arithmetic context, and the reason for not being
subcanonical is that they involve proper morphisms. All these topologies are
depicted on the right of the main stem.

3. The h topology originates in Voevodsky’s homology of schemes. The qfh
topology is the h topology with an extra quasi-finiteness condition.

4. The rather obscure étale h (or eh) topology is what the completely decomposed
(or cdh) topology is to the Nisnevich topologies (if one is familiar with them):
abstract blow-ups are added as covering maps.

5. For the definitions of the other topologies one should read [1112.5206]. The
abbreviations cdp, `′dp and fps`′ (where ` is a prime) refer to completely
decomposed proper, `′-decomposed proper and “fini, plat, surjectif et premier
à `′”. Gabber’s `′-topology is then taken as the topology generated by the
Nisnevich and `′dp covers.

6. The naive fpqc topology is a Grothendieck topology defined by taking fpqc
morphisms without the finiteness conditions, but it is not subcanonical.

1.6 Comparison of cohomology

With such a plethora of topologies it is important to have cohomological comparison
results, i.e. we would like to know under which conditions the cohomology groups
turn out to be isomorphic. One can then choose the best topology to compute the
desired cohomology groups. Three examples are discussed here, a myriad others
exist. The first result is that the Zariski topology is already good enough to compute
coherent cohomology [Mil80, proposition 3.7].
Theorem 16. Let X be a scheme. Let F be a quasicoherent OX -module. Denote
by Ffpqc its associated sheaf on X fpqc. Then we have the isomorphisms

(5) Hi(XZar,F)∼= Hi(X fpqc, (Ffpqc))

for all i ≥ 0.

We can also prove the analogous comparison with the étale topology:

(6) Hi(XZar,F)∼= Hi(Xét, (Fét))

for all i ≥ 0.
If on the other hand we consider smooth group schemes, i.e. the sheaves repre-

sented by group objects in Sch/X , we obtain the following comparison result, saying
that we need to look at the étale topology (or finer) to get the true cohomology
groups [Mil80, theorem 3.9].
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(4)

Zariski

Nisnevich cdp fps`′

étale cdh `′dp

smooth eh `′

syntomic

fppf

fpqc naive fpqc

canonical qfh

h

Figure 1: A comparison of Grothendieck topologies on the category of schemes
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Theorem 17. Let X be a scheme. Let G be a smooth, quasiprojective, commutative
group scheme over X . Then we have the isomorphisms

(7) Hi(Xét, G)∼= Hi(X fpqc, G)

for all i ≥ 0.

The most important result in our case, which will motivate our choice of the
étale topology, is the following [Mil80, theorem 3.12].
Theorem 18. Let X be a smooth scheme over C. Let M be a finite abelian group.
Then we have the isomorphisms

(8) Hi(X (C), M)∼= Hi(Xét, M)

for all i ≥ 0.

The necessity of the finiteness will be discussed later. So we can conclude that
the “algebraic” definition of the étale topology suffices to obtain the same results as
with the finer analytic topology (although a real comparison doesn’t really make
sense).
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2 Étale cohomology

2.1 Motivation

We have seen that the Zariski cohomology groups of a constant sheaf are not quite
what we want them to be. And there is a second issue with the Zariski topology,
when one tries to mimick techniques from topology or analysis: the inverse function
theorem fails. By fixing this failure of the Zariski topology we obtain without further
ado the étale topology.

Consider the map A1
k → A

1
k : x 7→ xn. If n - char k this morphism is étale

everywhere except at the origin. But in the Zariski topology it is nowhere a local
isomorphism: we’d need nonempty open subsets U and V of A1

k such that the
restriction of the map yields an isomorphism between V and U . As our objects are
affine, we can consider the algebraic side of the picture: the map A1

k → A
1
k is written

as k[t]→ k[t] : t 7→ tn. As the function fields of the affine line and the open sets
U , V are all k(t), and the induced morphism is k(t)→ k(t) : t 7→ tn, we cannot get
an isomorphism.

If we consider the analytic situation, for n= 2 and k = C, we need to construct
an inverse function x 7→

p
x on some open set. Complex analysis tells us that by

choosing a nice curve from 0 to∞ we can construct this inverse function. But the
open set that is the complement of this curve is not open in the Zariski topology,
only in the analytic topology. So the idea that is already present in the definition of
an étale morphism is that we “add” those inverse functions, such that we get finite
covers étale locally.

2.2 The étale topology

Using the following proposition one can define the étale topology and compare it to
the Zariski topology, as was implicitly done in sections 1.2 and 1.5.

Proposition 19.

1. Let f : X → X ′ and g : Y → Y ′ be étale morphisms over a base scheme S. Then
the base change

(9) f ×S g : X ×S Y → X ′ ×S Y ′

is also étale.

2. Let f : X → Y and g : Y → Z be étale morphisms. Then the composition

(10) g ◦ f : X → Z

is also étale.

3. An open immersion is an étale morphism.

Hence we can define both a small étale site Xét and its big counterpart (Sch/X )ét
for any scheme X , as was done in examples 7 and 9.

Having defined a topology and a category of sheaves, we can immediately apply
the techniques of sheaf cohomology as developed for classical topologies. We will
simply call sheaf cohomology with respect to the étale topology by the obvious
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“étale cohomology”. This étale cohomology and its applications concerning the Weil
conjectures are discussed in the next section.

With some extra care because we are using Grothendieck topologies, one
can define direct and inverse images of sheaves on the étale site along a mor-
phism f : X → Y . As in the case of the Zariski topology we obtain an adjoint
pair ( f ∗, f∗). As in the classical case the inverse image functor f ∗ is exact, while f∗
is in general only left exact. So we can derive f∗ to obtain higher direct images Rq f∗.
If f is a finite morphism then f∗ is also right exact, and the higher direct images
vanish.

To compute the higher direct images in case of a composition of morphisms
there exists a technical tool called a spectral sequence. It exists in the full generality
of topological spaces. To discuss spectral sequences here would be impossible, but
the main result is that we can approximate the higher direct image of a composition
using the composition of the higher direct images: let f : X → Y and g : Y → Z be
continuous morphisms of topological spaces and F a sheaf of abelian groups on X ,
then we have

(11) Ep,q
2 = Rp g∗ ◦Rq f∗(F)⇒ Ep,q

∞ = Rp+q(g ◦ f )∗(F).

2.3 Galois cohomology

As discussed in remark 8 Galois cohomology can be considered as a special case of
étale cohomology. In this section this is elaborated.

Let K/k be a Galois extension of fields. Then we have that the tensor product of
fields gives

(12) K ⊗k K ∼=
∏

g∈Gal(K/k)

K

or in more geometric terms

(13) Spec K ×k Spec K ∼=
∐

g∈Gal(K/k)

Spec K .

To give the link with Galois cohomology, the isomorphism (12) should be made
more explicit. It is actually the morphism

(14) x ⊗ y 7→ (x g(y))g∈Gal(K/k)

hence the information contained in the Galois group is made visible.
In Galois cohomology the main object of interest is Gal(ksep/k), the absolute

Galois group. It is obtained by taking the limit over the finite separable extensions.
These extensions are exactly the étale covers, and the decomposition from (13)
yields an interpretation of étale sheaves in terms of Galois modules [Con].

Moreover, by iterating this construction for a finite extension K/k we get

(15) K ⊗k K ⊗k K ∼=
∏

g1,g2∈Gal(K/k)

Spec K

and so on. These objects are actually the “intersections” from the theory of Čech
cohomology for Grothendieck topologies [Mil80, Section III.2]. If one is familiar
with the construction of the bar resolution from group cohomology, it is clear that
the Čech complex and the standard complex agree. So this proves the statement
that Galois cohomology is just étale cohomology for X = Spec k.
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2.4 Weil cohomologies

As discussed before we are looking for a Weil cohomology theory, which is a con-
travariant functor H• from smooth projective varieties over a base field k to graded
algebras over a coefficient field K of characteristic zero satisfying a list of properties.
By the very existence of this cohomology theory one can prove a large part of the
Weil conjectures by its formal properties. But this does not apply to every aspect of
the Weil conjectures, most notably the Riemann hypothesis.

The list of properties is

finite-dimensionality each Hi(X ) is a finite-dimensional K-vectorspace;

vanishing if X is n-dimensional then Hi(X ) = 0 if i /∈ {0, . . . , 2n};

orientation the top cohomology H2n(X ) is isomorphic to K;

Poincaré duality we have a non-degenerate pairing

(16) Hi(X )×H2n−i(X )→ H2n(X )∼= K;

Künneth isomorphism we have a canonical isomorphism

(17) H•(X )⊗K H•(Y )→ H•(X ×k Y );

cycle map we have a morphism

(18) γX : Zi(X )→ H2i(X )

interpreting algebraic cycles of codimension i in the 2ith cohomology group
such that this is compatible with the Künneth isomorphism and if X is a single
point the map γX is Z ,→ K .

The following two properties are not a part of the basic list of axioms, but are
satisfied in the case of étale cohomology. They relate to the Riemann hypothesis
part of the Weil conjectures.

weak Lefschetz for every smooth hyperplane section j : W ⊂ X are the pullback
maps j∗ : Hi(X )→ Hi(W ) isomorphisms for i ≤ n− 2 and a monomorphism
for i = n− 1;

hard Lefschetz for every hyperplane section j : W ⊂ X we denote w = γX (X )
in H2(X ), then the hard Lefschetz operator is defined by

(19) L: Hi(X )→ Hi+2(X ) : x 7→ x ·w

and the iterated maps

(20) Li : Hn−i(X )→ Hn+i(X )

is an isomorphism for i = 1, . . . , n.

Up to now, four “classical” Weil cohomologies have been established. These are

`-adic cohomology where k is arbitrary and K =Q` for ` 6= char k, using the étale
topology;
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singular cohomology where k = K = C, using the analytic topology;

(algebraic) de Rham cohomology where char k = 0 and K = k, using the Zariski
topology;

crystalline cohomology where k is a perfect field of characteristic p and K is the
fraction field of the ring of Witt vectors of k, using divided power thickenings
of the Zariski topology.

We can now elaborate on the relation between étale cohomology and `-adic
cohomology. As discussed before, the first is nothing but the calculation of sheaf
cohomology in the étale topology, without further ado. For quasicoherent sheaves
the cohomology groups agree with the Zariski (or coherent) cohomology groups.
But the computation is not necessarily easier in the étale topology, so the benefits of
using the étale topology lie elsewhere: the classes of torsion or constructible sheaves
(these notions will be defined below). The reason why we use this type of sheaves
can be motivated using the Tate modules, as discussed in the previous lecture, or by
the example below.

So `-adic cohomology is the Weil cohomology theory one obtains by using the
étale topology and the constructible sheaves. As the overview suggests: the field of
coefficients for `-adic cohomology is Q` where ` is different from the characteristic
of the base field of the varieties. But it is important to remark that `-adic cohomology
is not just étale cohomology for the constant sheaf Q`!

It is of course possible to calculate the cohomology groups of the constant
sheaf Q`. But they are not what we are looking for: the étale topology behaves good
for constant torsion sheaves, but not for non-torsion sheaves such as Q` or Z. Recall
that we can obtain the étale fundamental group π1(X , x), by using the construction
with covering spaces [Mil12, section I.3]. We then want the first cohomology group
of a constant sheaf to be related to the π1 of that scheme, but this fails for nontorsion
sheaves as the following example shows.

Example 20. Let X be a normal scheme then have

(21) H1(Xét,Z)∼= Homcont(π1(X , x),Z) = 0

where Z has the discrete topology. The cohomology group is actually zero, because a
continuous map f : π1(X , x)→ Z yields an open subgroup f −1(0). But as π1(X , x)
is a compact topological group such a subgroup is necessarily of finite index. But
this implies that f −1(0) = π1(X , x) as Z has no finite subgroups.

So using the constant sheaf with values in Ql is not going to work. On the other
hand we observe that for the torsion sheaves Z/`nZ we have

(22)
lim←−H1(Xét,Z/`nZ)∼= lim←−Homcont(π1(X , x),Z/`nZ)

∼= Homcont(π1(X , x),Z`)

where Z` is equipped with the `-adic topology. After tensoring this with Q` we
obtain an object that has coefficients in a field of characteristic zero, as desired. In
other words, we define

(23) Hi(X ,`) := lim←−Hi(Xét,Z/`nZ)⊗Z` Q`

to be the `-adic cohomology groups.
Now one of course has to prove that this construction yields a good Weil co-

homology theory. And one has to work over a separably closed field k, which is
possible by base changing the varieties over k to the separable closure ksep.
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2.5 Constructible sheaves

Zariski cohomology is all about (quasi)coherent sheaves, where we try to describe
the properties of schemes using their categories of quasicoherent sheaves. When
trying to mimick algebraic topology, where one often uses constant sheaves, we have
seen that the Zariski topology has too few open sets. Hence we have introduced the
étale topology.

So we are interested in (locally) constant sheaves, but this subcategory of sheaves
is not well-behaved, for instance pushforward along proper morphisms, or even
closed immersions, fails.

Example 21. Let (A,m) be a local ring. Consider the scheme X = Spec A, and
let i : Spec k(m)→ X be the immersion of the closed point. Consider the constant
sheaf Z on Spec k(m)ét. Then i∗(Z) is not locally constant, because it only has a
non-zero stalk in m. But a locally constant sheaf on Xét is either zero, or non-trivial
at all stalks.

We will consider the smallest subcategory of sheaves that contains the (finite)
constant sheaves and that satisfies the preservation property along proper mor-
phisms. These will be the constructible sheaves.

They form an abelian category of sheaves, and in case you’re familiar with the
representability arguments from the theory of algebraic stacks: the constructible
sheaves are exactly the sheaves represented by an étale algebraic space of finite
type.

Definition 22. Let F be a sheaf of abelian groups on Xét. It is finite if F(U) is finite
for all quasicompact U . It has finite stalks if Fx is finite for all geometric points of x
in X .

Neither of these conditions implies the other. But if F is locally constant then
having finite stalks implies that it is finite.

Definition 23. Let F be a sheaf of abelian groups on Xét. It is locally constant if there
exists an étale cover {Ui → X }i∈I such that the restriction F|Ui

is a constant sheaf
for all i ∈ I .

We now give a definition of constructible sheaves in terms of the properties we
want this subcategory to have. After that we give a characterisation in terms of the
previous definitions.

Definition 24. Let F be a sheaf on (Sch/X )ét. Denote f : (Sch/X )ét → Xét, the
change of sites that is the identity on the objects. We call F locally constructible
if F ∼= f ∗ ◦ f∗(F). It is moreover constructible if it is locally constructible and its
espace étalé is of finite type.

An espace étalé is (in a topological context) a way of representing a sheaf on a
topological space X as another topological space, together with a morphism to X .
One can do the same thing for a sheaf on the étale topology, but the representing
object is now an algebraic space (not a scheme) [Mil80, theorem V.1.5].

So a locally constructible sheaf is a sheaf on the big étale site that is completely
defined by its restriction on the small étale site. By adding a finiteness assumption
we get constructibility. We can characterise them in two ways.

Proposition 25. Let F be sheaf on Xét. It is constructible if one of the following
equivalent conditions A or B is satisfied

A. locally constant in a closed subscheme, with finite stalks

13



1. every irreducible closed subscheme Z of X contains a (nonempty) open
subscheme U of Z such that the restriction F|U is locally constant;

2. it has finite stalks.

B. stratification every quasicompact open U ⊆ X is a finite union U =
⋃

i Zi of
locally closed subschemes Zi such that F|Zi

is finite and there exists a finite
étale morphism Z ′i → Zi such that F|Z ′i is constant.

2.6 Glueing

The following section discusses a collection of six functors. It is used to cut up the
category of sheaves on the (small) étale site and paste it together again, and uses
the situation depicted in (24). In section 3.6 another set of six functors is introduced,
and they are called “Grothendieck’s six operations”. These exist in other contexts,
one of them is discussed in section 3.6.

Let X be a scheme, U an open subscheme of X and Z a closed subscheme of X
such that X = Z t U on the level of the underlying sets. This yields the situation

(24) Z X U/
i ◦

j

Take F on Xét. Then we have sheaves i∗(F) and j∗(F) on Z and U . By adjointness
we get a morphism F→ j∗ ◦ j∗(F), and applying i∗ yields

(25) φF : i∗(F)→ i∗ ◦ j∗ ◦ j∗(F)

on Z . So for every sheaf F on Xét we have an induced triple

(26) (i∗(F), j∗(F),φF).

Now we define T(X ) to be the category whose objects are triples (F1,F2,φ)
where F1 ∈ Sh(Zét), F2 ∈ Sh(Uét) and φ : F1 → i∗ ◦ j∗(F2), and its morphisms are
pairs (ψ1 : F1→ F′1,ψ2 : F2→ F′2) such that

(27)

F1 i∗ ◦ j∗(F2)

F′1 i∗ ◦ j∗(F′2)

φ

ψ1 i∗◦ j∗(ψ2)

φ′

commutes. This category T(X ) is equivalent to Sh(Xét). Moreover, exactness of a
sequence is checked by checking exactness of the induced sequences in Sh(Zét)
and Sh(Uét).

We are now in the position to define the six functors. These are

(28) Sh(Zét) Sh(Xét) Sh(Uét).
i∗

i∗

i!

j∗

j!

j∗

The functors i∗, i∗, j∗ and j∗ are the usual adjoint functors (in a Grothendieck
topology context). We also have “exceptional” functors: j! is the extension by zero,
and i! is the subsheaf of sections with support in Z .

14



Given the equivalence of the categories T(X ) and Sh(Xét) we can describe these
as

(29)
i∗ : F1 ← [ (F1,F2,φ)
i∗ : F1 7→ (F1, 0, 0)
i! : kerφ ← [ (F1,F2,φ)

j! : (0,F2, 0) ← [ F2
j∗ : (F1,F2,φ) 7→ F2
j∗ : (i∗ ◦ j∗(F2),F2, id) ← [ F2.

We have the following easy results for these six functors [Mil80, proposition 3.14].
Proposition 26. Each functor is left adjoint to the one below it. The functors i∗, i∗,
j! and j∗ are exact while the functors j∗ and i! are left exact. The compositions i∗ ◦ j!,
i! ◦ j!, i! ◦ j∗ and j∗ ◦ i∗ are zero. The functors i∗ and j∗ are fully faithful.

We have the exact sequences

(30) 0→ j! ◦ j∗(F)→ F→ i∗ ◦ i∗(F)→ 0

and

(31) 0→ i∗ ◦ i!(F)→ F→ j∗ ◦ j∗(F).
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3 Results in étale cohomology

3.1 Proper base change

From this point on I will give a quick overview of some the properties of étale
cohomology in Chapter 6 of [Mil80], backed by the expositions in [SGA43] and
[SGA4½] where appropriate.

The first result is the proper base change theorem, and its related corollaries.
First we give the technical result that lies at the heart of the actual theorems.

Theorem 27. Let π: Y → X be a proper morphism. Let F be a constructible sheaf
on (Sch/Y )ét. Then Riπ∗(F) is a constructible sheaf on (Sch/X )ét for all i ≥ 0.

The proof of this theorem in [SGA43] is difficult and long, it has been simplified
by Artin in [ALB73] using representability arguments and algebraic spaces.

Before giving the actual proper base change theorem, we discuss how the general
base change morphism is obtained. Let

(32)

Y ′ Y

X ′ X

f ′

π′ π

f

be a pullback diagram. Let F be a sheaf on Xét. We have the morphism

(33) F→ f ′∗ ◦ f ′∗(F)

induced by adjunction. The Grothendieck spectral sequence for a sheaf on Xét and
morphisms f : X → Y and g : Y → Z is given by

(34) Ep,q
2 = Rp g∗ ◦Rq f∗(F)⇒ Ep,q

∞ = Rp+q(g ◦ f )∗(F)

which yields the edge morphisms

(35) Rp g∗ ◦ f∗(F)→ Rp(g ◦ f )∗(F)

and

(36) Rp(g ◦ f )∗(F)→ g∗ ◦Rp f∗(F).

Then consider the composition

(37)

Rpπ∗(F)→ Rpπ∗ ◦ f ′∗ ◦ f ′∗(F) (33)

→ Rp(π ◦ f ′)∗ ◦ f ′∗(F) (35)

= Rp( f ◦π′)∗ ◦ f ′∗(F) (32)

→ f∗ ◦Rpπ′∗ ◦ f ′∗(F) (36)

and so by adjunction we obtain the base change morphism

(38) f ∗ ◦Rpπ∗(F)→ Rpπ′∗ ◦ f ′∗(F).

We are interested in conditions that ensure this morphism is an isomorphism, either
by restricting the morphisms, the type of sheaves, the schemes or a combination of
these. We can now give a first example of such a base change theorem.
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Corollary 28 (Proper base change). Let

(39)

Y ′ Y

X ′ X

f ′

π′ π

f

be a pullback diagram, where π is a proper morphism. Let F be a torsion sheaf
on Yét. Then the base change morphism

(40) f ∗ ◦Riπ∗(F)→ Riπ′∗ ◦ f ′∗(F)

is an isomorphism for all i ≥ 0.

If we apply the proper base change theorem to a fiber, i.e. one of the derived
functors reduces to cohomology groups, we get a special corollary that we will state
for later use.

Corollary 29. Let π: Y → X be a proper morphism. Let x be a geometric point of X .
Let Yx → x be the (geometric) fiber. Let F be a torsion sheaf on Yét. Then we have a
canonical isomorphism

(41) (Riπ∗(F))x → Hi(Yx ,F|Yx
)

for all i ≥ 0.

Corollary 30 (Invariance under change of base field). Let k ⊆ K be separably closed
fields. Let X be a scheme that is proper over Spec k. Let F be a torsion sheaf on Xét.
Then

(42) Hi(X ,F)∼= Hi(X ⊗k K ,F|X⊗kK)

for all i ≥ 0.

Corollary 31 (Finiteness). Let X be proper over a field k. Let F be a constructible
sheaf on Xét. Then Hi(X ,F) is a finite-dimensional k-vectorspace for all i ≥ 0.

3.2 Higher direct images with proper support

Definition 32. Let X be a separated scheme of finite type over a field. Let F be a
sheaf on X . The group of sections with proper support of F is

(43) Γc(X ,F) :=
⋃

Z

ker (Γ(X ,F)→ Γ(X \ Z ,F))

where Z runs through the complete subvarieties of X .

� This functor is left exact, but not right exact. If we were to naively consider
its derived functors we would not get interesting results. This is related to the

fact that on an affine scheme there aren’t many sections with proper support.
To define the correct version of “derived” functor (which is a misleading name,

it is a functor living on the level of derived categories, but it is not a derived functor
as such) in a meaningful way we have to consider an open embedding j : X ,→ X in
a complete variety, a so called compactification. By a theorem of Nagata a compacti-
fication always exists for a separated scheme of finite type over a field. This yields
the following definition.
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Definition 33. Let X be a separated scheme of finite type over a field. Let F be a
sheaf on X . The cohomology groups with proper support are

(44) Hp
c (X ,F) := Hp

�

X , j!(F)
�

where j! is the extension by zero functor.

If we consider a single complete subvariety this is well-known in a general
topological context [Har77, exercise III.2.3], where we have the exact sequence

(45)
0→ H0

Z(X ,F)→ H0(X ,F)→ H0(X \ Z ,F)→ . . .

. . .→ H1
Z(X ,F)→ H1(X ,F)→ H1(X \ Z ,F|)→ . . .

relating the cohomology with supports to the cohomology on X and X \ Z . This can
moreover be viewed in light of the glueing techniques from section 2.6.

The definition actually depends on the choice of the compactification, but if F
is a torsion sheaf we can prove it is independent after all. To do so we introduce a
relative notion.

Definition 34. Let π: U → S be a morphism. It is compactifiable if it can be embed-
ded in a diagram

(46)

U X

S

◦
j

π π

where j is an open immersion and π is a proper morphism.
The associated derived functors, which are called higher direct images with proper

support are defined by setting

(47) Ri
cπ∗(F) := Riπ∗ ◦ j!(F).

We are using the notation from [Mil80] here, in [SGA43] this is denoted Riπ!. The
reason this notation is used in [Mil80] is to stress the fact that we’re not deriving
the functor π! here.

We can now state (and prove) the invariance under the choice of compactifica-
tion.

Theorem 35. Let π: U → S be a compactifiable morphism. Let F be a torsion
sheaf on U . The sheaves Ri

cπ∗(F) do not depend on the choice of the compactifica-
tion j : U ,→ X .

Proof. Let j1 : U ,→ X1 and j2 : U ,→ X2 be two compactifications. Consider the
diagram

(48)

U

X1 ×S X2 X1

X2 S.

◦

j2

◦
j1

π1

π2
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If we denote X3 the closure of the image of U in X1 ×S X2 we get a third compactifi-
cation j3 : U → X3 which fits into the diagram. We obtain a proper map g : X3→ X1
such that

(49)

U

X3 X1

S

◦
j3

◦
j1

g

π3

π1

commutes. Hence by the Grothendieck spectral sequence applied to derived functors
induced by the composition π3 = π1 ◦ g we obtain the spectral sequence

(50) Rnπ1,∗ ◦Rm g ◦ j3,!(F)⇒ Rn+mπ3,∗ ◦ j3,!(F).

By (41) in corollary 29 the stalks of the sheaf Rm g∗ ◦ j3,!(F) can be determined by
the cohomology groups for the sheaves j3,!(F)|X3,x

on the fibers of the morphism g.
But as the fiber X3,x either consists of a single point if x ∈ U , and j3,!(F)|X3,x

= 0 in
the other case, we obtain for m= 0

(51) g∗ ◦ j3,!(F)∼= j1,!(F)

and

(52) Rm g∗ ◦ j3,!(F) = 0

for m≥ 1. Hence the spectral sequence (50) just computes

(53) Rnπ1,∗ ◦ j1,!(F)∼= Rnπ3,∗ ◦ j3,!(F)

and this is exactly the definition of the higher direct images with proper support.

3.3 Smooth base change

We now want our torsion to be prime to the characteristics of the residue fields of
the points in the scheme we are considering. To do so we define

Definition 36. Let X be a scheme. Denote

(54) char X :=
�

p | ∃x ∈ X : p = char k(x)
	

.

Equivalently we could say that this is the image of the canonical morphism to the
final object X → SpecZ.

Let F be a sheaf on X . Then the torsion of F is prime to char X if the multiplication
morphism p : F→ F is injective for all p ∈ char X \ {0}.

As the title of this section suggests we also have a smooth base change theorem,
which is the following.

Theorem 37 (Smooth base change theorem). Let

(55)

Y ′ Y

X ′ X

g ′

π′ π

g
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be a pullback diagram, where g is a smooth and π a quasicompact morphism. Let F
be a torsion sheaf on Yét such that its torsion is prime to char X . Then the base
change morphism

(56) g∗ ◦Riπ∗(F)→ Riπ′∗ ◦ g ′∗(F)

is an isomorphism for all i ≥ 0.

We have proved a similar theorem in section 3.1. But the hypotheses are different
in that case. For the proper base change we have the (strong) properness assumption
on the morphism π, while there is no condition on the torsion of the sheaf. For the
smooth case we can on the other hand use a limit argument to obtain the result for
arbitrary schemes over a separably closed field, but the torsion of the sheaf should
be prime to the characteristic of k.

Using smooth and proper base change we can obtain the following result.

Corollary 38 (Smooth specialisation of cohomology groups). Let π: Y → X be a
proper and smooth morphism. Let F be a constructible and locally constant sheaf
on Yét whose torsion is prime to char X . Then for all i ≥ 0 the sheaves Riπ∗(F) are
again both constructible and locally constant. If X is moreover connected, then the
cohomology groups from (41) are all isomorphic.

Another result from the smooth base change theorem, which should be in-
terpreted in terms of motives and their A1-homotopy invariance is the so called
acyclicity of taking the affine space over a scheme. First some definitions.

Definition 39. Let g : Y → X be a morphism. Let n ≥ −1 be an integer. Then g is
n-acyclic if for all X ′ → X étale of finite type and for all torsion sheaves F on X ′

whose torsion is prime to char X , the morphism

(57) Hi(X ′,F)→ H i(Y ×X X ′,F|Y×X X ′)

is an isomorphism for i = 0, . . . , n and injective for i = n+ 1. If it is n-acyclic for
all n≥−1 it is called acyclic.

We then have the following theorem.

Theorem 40. Let X be any scheme. The canonical morphism g : An
X → X is acyclic.

This means that we have an isomorphism

(58) Hi(X ,F)∼= Hi(An
X , g∗(F)).

(59)

An
X ′ X ′

An
X X .

g ′

g

Let F be a torsion sheaf on X ′ such that its torsion is prime to char(X ). Then we can
phrase the acyclicity as either the isomorphism of the cohomology groups

(60) Hi(X ′,F)∼= Hi(An
X ′ , g ′∗(F))

or the fact that F ∼= g ′∗ ◦ g ′∗(F) and Ri g ′∗ ◦ g ′∗(F) = 0 for i ≥ 1. This yields both a
motivic interpretation, and a means to prove the results from the next section.
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3.4 Purity

First we define the twisting operation as known for coherent cohomology in the
case of Z/nZ-modules and étale cohomology. We will denote by (−c) the twisting
by −c. First we define for a ring A by µn(A) its group of nth roots of unity. Then we
define the Tate twists to be

(61) µn(A)
⊗r :=







µn(A)⊗ . . .⊗µn(A) r ≥ 1

Z/nZ r = 0

HomZ/nZ(µn(A)⊗−r ,Z/nZ) r ≤−1.

Then we can define the sheaf Z/nZ(r) on Xét by taking

(62) Γ(U ,Z/nZ(r)) := µn(Γ(U ,OU))
⊗r .

Finally we can define the twisting operation for every sheaf F of Z/nZ-modules by

(63) F(r) := F⊗Z/nZ(r).

Now consider the scenario

(64)

Z X U

S

/
i

h

◦
j

f
g

where i is a closed immersion, j is an open immersion, X = U t Z on the level
of the underlying sets and f , g and h are smooth. This situation is familiar from
section 2.6. Then the pair (Z , X ) is called a smooth S-pair. If for all s ∈ S the fiber Zs
has codimension c then we say (Z , X ) has codimension c.

In this set-up one can prove a cohomological purity result, i.e. the cohomology
groups are concentrated in degree 2c for the cohomology with proper support and
sufficiently nice sheaves. This result is valid in a relative situation, but we will
restrict ourselves to S = Spec k.

Theorem 41 (Cohomological purity). Let (Z , X ) be a smooth S-pair of codimen-
sion c, where S = Spec k. Let F be a locally constant torsion sheaf on Xét with
torsion prime to char X . Then

(65) Hq
Z(X ,F)∼= Hq−2c(Z ,F(−c))

for all q ≥ 0.

This result yields the following corollary, which relates the cohomology of X to
the cohomologies of Z and U , mimicking the Gysin exact sequence from algebraic
topology which is a special case of the Serre spectral sequence.

Corollary 42 (Gysin exact sequence). Let (Z , X ) be a smooth S-pair of codimen-
sion c, where S = Spec k for k any field1. Let F be a locally constant sheaf on Xét

1In [Mil80] only the separably closed case is proved but it holds in general.
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of Z/nZ-modules, where n is prime to char(X ). We have the exact sequence

(66)

0→ H2c−1(X ,F)→ H2c−1(U ,F|U)→ H0(Z , i∗(F)(−c))
i∗→ . . .

. . .→ H2c(X ,F)→ H2c(U ,F|U)→ H1(Z , i∗(F)(−c))
i∗→ . . .

...

. . .→ H2 dim X−1(X ,F)→ H2dim X−1(U ,F|U)→ H2(dim X−c)(Z , i∗(F)(−c))
i∗→ . . .

. . .→ H2 dim X (X ,F)→ H2dim X (U ,F|U)→ 0

where the maps

(67) i∗ : H j(Z , i∗(F)(−c))→ H j+2c(X ,F)

are the Gysin maps, for j = 0, . . . , 2(dim X − c).

3.5 Poincaré duality

From this point on we need the full power of derived categories to state and prove
our results. The derived functor version of the statement simply isn’t true. This
aspect isn’t treated in a good way in [Mil80], one needs to resort to [SGA43] to
really see what’s going on.

To state the theorems we need to introduce the exceptional inverse image
functor f ! for every morphism f : X → Y of schemes. So this is more general than
the situation from section 2.6. This functor is again motivated by algebraic topology.
Its definition is rather involved. We will discuss the topological case [Ive86].
Definition 43. Let f : X → Y be a morphism of topological spaces. The direct image
with proper support f! is a functor Sh(X )→ Sh(Y ) defined by setting

(68) f!(F)(U) :=
¦

s ∈ F( f −1(U)) | f |supp(s) : supp(s)→ U is a proper morphism
©

.

We observe that f is itself a proper morphism, then f! = f∗. In general we only
obtain a subsheaf of the direct image sheaf.

We now apply the same idea as in the construction of the cohomoloy groups
with proper support. There is again a naive construction of a derived functor for f!
but we need to circumvent this as it would yield the wrong results. Nevertheless, it
will be possible to construct R f!, the higher direct image with proper support. One
now tries to construct a right adjoint to this functor, which is called the exceptional
inverse image. It is either denoted R f ! or f !. Both notations have their downsides:
the first one suggests that it is the derived functor of some (nonexisting) functor,
while the second doesn’t indicate we are working in a derived context. We will stick
to the second notation here. For its complete definition and properties, see [Ive86;
SGA43].

With the exceptional inverse image functor being defined we can give the
“abstract” version of Poincaré duality, which is [SGA43, théorème XVIII.3.2.5].
Theorem 44 (Poincaré duality). Let f : Y → X be a smooth and compactifiable
morphism. Denote d the (locally constant) function on Y that assigns the relative
dimension of f . Let n ≥ 1 be a function that is prime to char X . Let F be a sheaf
of Z/nZ-modules on X . Then the functor

(69) R f! : D(Y )→ D(X )
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admits a right adjoint

(70) f ! : D(X )→ D(Y )

which is given by

(71) F• 7→ f ∗(F•(d)[2d])

for F• in D(X ). There is moreover a trace morphism

(72) Tr f : R f! ◦ f !(F•) = R f! ◦ f ∗(F•(d)[2d]) 7→ F•

with the adjunction isomorphism

(73) HomD(Y )(G
•, f !(F•))∼= HomD(X )(R f!(G

•),F•)

for G• in D(Y ).
To state the more down-to-earth version of this duality (where we actually see

the duality of certain cohomology groups) we denote the Z/nZ-dual of a locally
constant and constructible sheaf of Z/nZ-modules by

(74) F∧ := RHom(F,Z/nZ).

Corollary 45. Let k be an algebraically closed field k. Let X be a smooth and
compactifiable scheme over k of pure relative dimension d. Let n be prime to char k.
Let F be a locally constant and constructible sheaf of Z/nZ-modules. Then we have
a canonical isomorphism

(75) H2d−i(X ,F∧(d))∼= Hi
c(X ,F)∧.

3.6 Grothendieck’s six operations

The adjoint functors R f! and f ! introduced in the previous section fit into a more
general framework: Grothendieck’s six operations. Next to the adjoint pair of the
previous section we have the adjoint functors R f∗ and L f ∗. When we extend these
with the adjoint pair consisting of the internal Hom, denoted RHom and the internal
tensor product −⊗L − we get an interesting “calculus” on the derived categories of
sheaves on schemes, where there are compatibilities between all the operations

This calculus provides the technical means to prove (amongst others) duality
results, generalizing Poincaré duality. When applied to the case of schemes we get
(coherent) Grothendieck duality, when applied to locally compact topological spaces
we get Verdier duality.

3.7 A few words on the literature

The main resource for étale cohomology is [SGA41; SGA42; SGA43]. Unfortunately
the level of generality can be a problem. The role that Hartshorne’s book on algebraic
geometry plays is more or less taken by [Mil80]. It has its downsides, just like
Hartshorne’s book, but it provides the backbone for a study in étale cohomology.

Another interesting book is [SGA4½] which can be considered as a guide to
the SGA’s. Similarly, [Tam94] serves as a (slightly more arithmetical) guide to the
literature. For motivations and overviews there is also [Mil12]. A recent book is
[Fu11], which can be considered as an abridged English version of the SGA’s. A
more general reference on Grothendieck topologies, sites, sheaf cohomology, etc. is
[Stacks].
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