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Abstract

To understand our world we classify things. A famous example is the periodic table of
elements, describing the properties of all chemical elements known to humanity, a classifica-
tion of the building blocks we can use in physics, chemistry, and biology. In mathematics,
and algebraic geometry in particular, there are many instances of similar “periodic tables”,
describing fundamental classification results. We will go on a tour of some of these.

To get a grip on the complexity of the world around us and the objects—such as animals, or
chemical elements, or stars—appearing in it, we want to classify these objects. This allows us
to describe the relationships, similarities, and differences between things we might be interested
in, and thus further understand our world.

An early, and somewhat cruel, effort to understand a class of living creatures lead to lepi-
dopterology: the study of butterflies and moths, most famously performed by sticking needles
through them and displaying them in nice wooden cases, cf. From the 17th century
onwards this was an important feature of humanity’s interest in biology, and it serves as a prime
example of classification in biology. Another important example is Darwin’s description and
classification of the beaks of the finches on the Galdpagos islands, which led him to formulate
the theory of evolution.

In this snapshot I want to introduce you to the idea that classification is an essential aspect
of mathematics, just like it is for biology (and other sciences). The mathematical objects we will
discuss are truly as pretty as the butterflies from And whilst in some cases it takes a
bit of training as a mathematician to fully grasp their beauty, at least no living creatures need
to be harmed to study them.

In §T] we will recall the periodic table of elements: an essential tool in modern chemistry, and
the result of a lengthy classification effort. The organisation of elements like hydrogen, carbon,
and uranium is similar to how mathematical objects are catalogued and have their properties
described in a systematic way. Luckily, the study of these mathematical objects requires less
interaction with dangerous chemicals.

An important feature is that these classification efforts are an ongoing process: when math-
ematicians complete one classification, they will move on to the next and more challenging one.
That is why we will discuss periodic tables in algebraic geometry, going from the 19th to the
21st century, and from completely known settings to cutting-edge research, in §3up to

1 The periodic table of elements

Every time one enters a chemistry classroom one is presented with a large poster, listing all
the 118 known chemical elements together with their properties. This is the famous periodic
table, and a very basic version is given in It lists elements like hydrogen, helium, and



Figure 1: The work of a lepidopterist

nitrogen in a specific shape which was essential for the development of chemistry in the 19th
and 20th century, and continues to be used to explore and explain chemical elements.

The name periodic table refers to an experimentally observed periodicity in the chemical
behavior of elements: certain elements tend to exhibit similar behavior. For example the atomic
radius has a periodicity: decreasing from left to right, and going up when going down in the
table. In the inert noble gases are listed on the very right in light green, with the
halogens as main building blocks for salts next to them, and the alkali metals in the first column
all being soft and reactive metals. These observations are what chemists tried to formalise into
a system. In 1869 Mendeleev catalogued the then-known elements in terms of atomic mass,
obtaining the periodic table we now know.

Originally there were gaps in the table: elements that were predicted to exist, but which were
not yet discovered. The periodicity of the periodic table also predicted some of the properties
that these elements were required to have. For example, Mendeleev predicted the existence of
an element with atomic mass +72.5, a high melting point, and a gray color. This was element
was subsequently found in 1887, and called germanium, in order to fill the gap which existed
at position 32.

Invariants of elements The periodic table in is a simplification of the periodic
table as you usually see it. For space reasons we only list the chemical symbol and its atomic
number. But usually a periodic table contains lots more data, such as the atomic weight, the
melting and boiling point, the electron configuration, etc. A beautiful interactive version can
be found at https://ptable.com.

These are all examples of invariants of the objects being classified: properties of the chemical
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Figure 2: The periodic table of elements

elements that do not change over time, and that do not depend on who measures them. By
measuring invariants we can identify which chemical element we are looking at, and distinguish
different elements. This is an important idea in mathematics too: mathematicians love to study
invariants of objects, and then use them to distinguish between different objects.

Stars and the Hertzsprung—Russell diagram In the first paragraph we also mentioned
that one can try to classify the stars in the sky. To better understand an important aspect of
classifications in mathematics we need to discuss how classifying stars is different from classifying
chemical elements.

Astronomers observed that not all stars are equal: some are brighter than others (even
when accounting for the distance), and some are hotter than others. Back in the early 1910s
Hertzsprung and Russell made a plot of those two properties of stars, and they noticed that some
types of stars are impossible. There are no super-bright cold stars, nor are there very faint hot
stars. And there are many stars like our Sun: they all have roughly the same brightness and the
same temperature. The interested reader is invited to read up more on the Hertzsprung—Russell
diagram.

The main takeaway is that it is possible to vary the parameters of a star, subject to certain
rules imposed by physics. This is a feature not present in the periodic table, but something
similar will happen in mathematics, so one better keep this behavior in mind.

2 Classifications in algebraic geometry

We now turn to classifications in mathematics. One famous instance of such a result in mathe-
matics is the Classification of Finite Simple Groups (CFSG). A group describes the symmetries
of an object, and group theory is a fundamental subject in modern mathematics. Just like
molecules are built using atoms, Jordan showed in 1870 that every finite group is built using
simple groups.



The first (interesting) simple groups were already discovered by Galois in 1831, when he was
studying solutions of polynomials of degree > 5. The first example contains 60 elements. The
last group to be discovered (in 1981) was the Monster group, and it has approximately 8 - 1053
elements. Through a large effort of many mathematicians the CFSG was obtained, stating that
all simple groups had been found in those 150 years. For more on this see, e.g., [Cra22, [GT16]
in this very Snapshots series.

We will instead focus on classifications in algebraic geometry, because the author is an
algebraic geometer and not a group theorist, and because the story of classifications in algebraic
geometry is less well-known than the CFSG. Algebraic geometry is the study of shapes described
by polynomial equations. The shapes we will be interested in are smooth projective varieties,
defined over the complex numbers. Let us unpack what this means.

Smooth projective varieties First of all, working over the complexr numbers is a necessity
to make things tractable, but it also makes it harder to make drawings. Usually we visualise the
complex numbers as the complex plane, with one real axis and one imaginary axis. But from
the point-of-view of an algebraic geometer the complex numbers are really a one-dimensional
object! That is why an algebraic geometer will often draw an impression of an object when
considered over the real numbers. More concretely, is what an algebraic geometer
would draw when drawing a curve, whilst is what a complex geometer would think
of, but they really are manifestations of the same object.

Now, what does it mean to describe a shape using polynomials? 1If f € C|[z] is a polynomial,
so f(z) = agr? + ag_12 ' + - + a1z + ag, we define the variety associated to it as

V(f) ={aeC]| f(a) =0},

the set of zeroes of f in the complex plane. This set is always finite if the polynomial is not
constant zero and consists of at most d points if it is not constant. Over the complex numbers
it consists of exactly d points counted with multiplicities. In general we will consider a finite
collection of polynomials in n variables fi,..., f, € Clz1,...,z,], and define

V(fl,...,fr):{(Oq,...,an) eCr ‘Vizl,...,’l“t fi(al,...,an):0},

the set of points (inside the affine space C™), or zero locus, satisfying all polynomial equations
simultaneously. These subsets are called affine varieties.

Instead of affine varieties we will be interested in projective varieties. In the affine plane
two lines can be parallel, but this causes annoying situations in which we have to say that two
distinct lines intersect in precisely one point unless they are parallel. That is why we extend our
affine geometry: to make statements like the one on intersections of distinct lines more uniform,
and get rid of the exceptions. In the projective world we have that our initial two parallel lines
now intersect in a point at infinity, so any two distinct lines now always intersect.

For this we need to replace the affine space in which affine varieties live, by projective space
P"(C). It is defined by considering the set C**1\ {(0,...,0)} of all points except the origin in
the affine space one dimension up, up to the equivalence relation which says that (ag, ..., ay) ~
(Boy - - ., Bn) if there exists some A € C\ {0} such that o; = A\j; for all i =0,...,n.

To work with projective varieties using polynomials, we will only consider homogeneous
polynomials: a polynomial in which every term has the same degree. For example 22 + y? 4 22
is a homogeneous polynomial of degree 2, in 3 variables. The projective variety associated to a
collection of homogeneous polynomials fi,..., fr € Clxg,...,z,] is

V(fl,...,fr):{(Oé(],...,Oén) E]P)n(C) |Vi:1,...,7”: fi(ozo,...,ozn):()}.



[
/

(a) Real points of the cubic curve (b) Real points of the singular cubic curve
y2 = — 2 y? = a3 + a2

Figure 3: A smooth versus a singular cubic curve

This is well-defined because we restricted our attention to homogeneous polynomials, so that
asking whether a polynomial is (non-)zero is independent of the scaling in the equivalence
relation. The example 22 + y? + 22 thus defines a curve in P?(C)—a conic—corresponding to

O 48

The final ingredient in order to describe the objects we are interested in is smoothness. This
is best explained through an example: consider the following degree 3 polynomials

f=-v+2°—2z
g=—1 + 2%+ 22

describing affine curves living in C2. If we draw these curves inside R? ¢ C? we get the pictures
as in We immediately see that on the right there is something funny happening at the
origin: there is a singularity. For more on singularities we refer to another Snapshot [BE14].

Classifying smooth projective varieties? In what follows next we discuss examples of
classifications of smooth projective varieties. This will illustrate how the life of an algebraic
geometer can be very similar to that of someone sticking needles through unsuspecting butter-
flies, or that of an experimental chemist inhaling noxious fumes in order to isolate an unknown
chemical element.

Before we embark on our journey we need to point out that to an algebraic geometer
classification can mean different things. Certainly, we are not just classifying polynomials,
rather we are interested in classifying varieties independently of their realisation. This gives
rise to classification we will mostly be talking about: that of varieties up to isomorphism, i.e. up
to their realisation inside some projective space.

It turns out that already in dimension 2 this becomes impossible, so that we will only
try to classify certain well-chosen objects. There is an entire branch of algebraic geometry,
called birational geometry, devoted to understanding the precise relationships between smooth
projective varieties which are different but nevertheless almost the same: we say that they are
birational, but we will not discuss this further.

3 Curves: Riemann

The first classification we look at will be of the simplest objects we can try to classify: curves,
or one-dimensional varieties.
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(a) A curve of genus 0 (b) A curve of genus 1 (¢) A curve of genus 3

Figure 4: Complex algebraic curves as Riemann surfaces

We have already seen an important recipe and some examples to describe curves: take a
homogeneous polynomial f € Clx,y, 2] of degree d and consider its zero locus V(f) C P?(C).

The pictures in really live in C2, but e.g., for we can remedy this affine

vs. projective discrepancy, replacing —y? + 23 — 22 by —y?z + 23 — 2222,

Can we describe all curves using a single homogeneous polynomial in 3 variables? In other
words, is every curve a plane curve, living in P2(C)? No. But one can show that every curve
is a space curve: it can be described by several polynomials in 4 variables, so that it is a curve
living in P3(C).

But does this help in the classification of curves? Recall that we don’t want to classify
polynomials, because those are only the tools to describe the curves. So we need to talk about
things which are intrinsic to the geometry of a curve, independent of the realisation.

A discrete invariant For this we can look at an algebraic curve as a so-called Riemann
surface: because we work over the complex numbers, a topologist’s picture of a curve is really
2-dimensional. This is also how they were originally studied by Riemann in the 1850s. We end up
with drawings as in They correspond to plane curves of degree 2, 3 and 4 respectively.
The obvious difference between these pictures is “the number of holes”. Mathematicians refer
to this number as the genus.

It is similar to what a biologist would use to distinguish a giraffe from a fish: the former
has 4 legs, the latter has none. Therefore they must be different in a meaningful sense, and the
biologist will say they belong to different species (even though they are both animals).

So for now the “periodic table” of the classification of curves looks pretty bland: it is just the
sequence of integers 0, 1,2, ... But biologists don’t stop classifying animals after having counted
their legs, and neither will we after counting holes.

On a Riemann surface mathematicians study certain additional structure which allows us
to speak about the curvature. This curvature is either +1, 0 or —1. The case of a sphere (as in
has positive curvature, the case of a torus (as in has zero curvature (we
say it is flat), and all other cases (e.g., have negative curvature. Thus, there is an
additional trichotomy into g =0, g =1 and g > 2.

Continuous parametrisations But this is still not the end of the classification of algebraic
curves. We have described a Riemann surface of genus 1 using a homogeneous polynomial of
degree 3. What happens if we start varying the coeflicients of this polynomial? For example,
what if instead of the homogeneous version y?z = x3 — 2222 of the equation in we
consider y?z = 2% —3x22? We can show that they define “the same” curve: they are isomorphic.

But what if we consider y?z = 23 — 3222 + 222 instead? Then we can actually show that
the curves are different, even though the genus is 1 in both cases. For this we’d have to use
something called the j-invariant: a number attached to every genus 1 curve. In the former case
it is equal to 1728, in the latter it is 864 (quick word of warning: the j-invariant is not a count
of anything, in general it can be any complex number). Thus to a trained algebraic geometer
these are in fact different curves. Hence we can use parameters in our equations and get truly
distinct answers. In our example changed the coefficient of 2% from 0 to 2, and we could in



fact have considered all intermediate values (including complex numbers) to get all kinds of
non-isomorphic curves of genus 1. They are usually referred to as elliptic curves, and they are
an important tool in modern cryptography.

This continuous behavior is not something that happens in the periodic table of elements:
you can’t move from hydrogen to helium by adding tiny fractions of neutrons, electrons and
protons. The closest analogy in science is the Hertzsprung—Russell diagram, where you can vary
the luminosity and temperature of a star continuously.

What about other degrees? Here the trichotomy into ¢ = 0, ¢ = 1 and g > 2 comes back
into play. We can show that for g = 0 there are no parameters possible (so there is a single
curve of genus 0), whilst for ¢ > 2 there are in fact 3g — 3 parameters (so there are many
curves of genus g, and describing them all in a suitable sense is an interesting problem). This
result for g > 2 is what Riemann obtained back in 1853, effectively introducing the notion of a
“moduli space” to mathematics: a parameter space to describe all curves of a given genus.

More precisely, a moduli space is a new geometric object, that acts as a record-keeping
device to describe a classification that involves continuous parameters. Every point in the
moduli space corresponds to a certain element in the classification, and if we move a tiny bit in
the moduli space we modify the element accordingly by a small amount to get a new element
in the classification. If we move around in a different direction, we get another element in the
classification.

This turns a classification of shapes into a new shape, and thus we can use all the tools
from algebraic geometry to study it. Many questions about a classification can be phrased in
terms of geometric properties of the moduli space, and mathematicians study moduli spaces of
all kinds.

4 Smooth projective surfaces: Enriques

Going up one dimension we end up with surfaces. They have been at the forefront of algebraic
geometry since the 19th century. The easiest algebraic surfaces we can produce are by taking a
homogeneous polynomial in 4 variables, and consider V(f) in P3(C). Because we are working
over the complex numbers this would require a 4-dimensional drawing, which goes beyond what
we can do here. But in we do what algebraic geometers often do: make a picture of
an affine piece over the real numbers. IMAGINARY in fact offers software to do this easily:
https://www.imaginary.org/program/surfer.

The classification of smooth projective surfaces is due to Enriques, as his life’s work, posthu-
mously published in 1949. We will necessarily have to gloss over many details, but we will high-
light some of its most interesting features. Without further mention we will classify minimal
surfaces: every surface can be reduced to such a surface in a controlled way, and we know how
to go back. Thus it suffices to classify these.

Trichotomy Just like for Riemann surfaces we have a notion of curvature, introducing an
important trichotomy between positive, flat and negative. With curves we had that positively
curved case was the easiest, there being a unique such curve. For surfaces this is still the
easiest case, but the uniqueness no longer holds: there are now 10 families of so-called del Pezzo
surfaces, named after the mathematician who classified them in 1887. Some of these are unique
in their family, for others there are continuous parameters.

If we consider a single homogeneous polynomial in 4 variables, the cases of degree d = 1,2
and 3 give rise to del Pezzo surfaces. In we have given an impression of an important
cubic surface, where d = 3. The geometry of these del Pezzo surfaces is already rich enough
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(a) The Clebsch cubic surface (b) A quartic K3 surface

Figure 5: Two algebraic surfaces considered in R?

to fill entire books—even though their classification is relatively straightforward—and their
higher-dimensional analogues will be important for what follows.

What about the flat case, the 2-dimensional analogue of elliptic curves? There are now two
distinct families. The closest analogue of elliptic curves are abelian surfaces. But there are also
K3 surfaces, named so by Weil in 1958 after the recently climbed K2 mountain in the Himalayas,
and the three mathematicians Kummer, Kahler, and Kodaira, who had been building the tools
to study algebraic geometry and these surfaces in particular.

If we again consider a single homogeneous polynomial in 4 variables, the case d = 4 gives
rise to a K3 surface, thus in we see an impression of an example. As with del Pezzo
surfaces, their geometry is rich enough to fill entire volumes, and their higher-dimensional
analogues will again be important for what follows.

The geography of surfaces: surfaces of general type We now come to the analogue of
curves of genus g > 2. There are such curves for every value of g, in fact there is an entire
moduli space of dimension 3g — 3 of them describing their classification.

Unlike for curves, a single integer is no longer enough to describe the crude classification of
surfaces. Two important integers we can assign to a surface are the Chern numbers c¢? and cy.
For the genus we only had the inequality g > 0 because we were counting something. For
surfaces the situation is more complicated, and the possible values depend on the curvature. In
the flat case ¢? = 0, whilst in the negatively curved case ¢ > 0. But what other conditions do
we have?

We also have c; > 0, but more interesting we have that c% + co = 0mod 12. Besides
this, there are two inequalities that need to be satisfied, the easier inequality to describe saying
that C% < 3cs. Inwe have drawn the “legal” values for sufficiently small Chern numbers.
These conditions are similar to a law in biology saying that the number of legs on an animal
is always even, but starfish are obvious counterexamples, so this particular universal biological
law does not exist.

Now we have discussed necessary conditions on the Chern numbers. Are these also sufficient
conditions, i.e., can we always find a surface with these allowed numbers? This leads to the
problem of understanding the geography of surfaces, in particular those with negative curvature,
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Figure 6: The geography of algebraic surfaces

which are called of general type,

We can already fill in two positions in our “atlas”: abelian and K3 surfaces have co = 0
resp. 24. Next, if we take a homogeneous polynomial of degree 5, we get a quintic surface, for
which ¢? = 5 and cz = 55. There are still many other legal values in and it is an
interesting challenge to find a construction for a surface with given coordinates. We don’t know
yet whether every pair of coordinates corresponds to a surface for instance, but luckily algebraic
geometers know of many interesting and beautiful examples.

The important takeaway is that the classification of surfaces of general type is still an open
problem, and it has been giving mathematicians enough material to work on for over a century.

5 Fano 3-folds: Mori—Mukai

In our journey through smooth projective varieties we now reach dimension 3. From this
point on it is impossible to make good pictures (although algebraic geometers do develop an
intuition for these objects, and make drawings which are hard, if not downright impossible, to
be interpreted by outsiders).

For curves and surfaces we saw that the trichotomy between positive, flat and negative
curvature gave very different flavours to the classification problem. This pattern continues in
higher dimension. The analogue of the g = 0 case for curves (so with positive curvature) and
del Pezzo surfaces are so-called Fano varieties, and thus in dimension 3 these are called Fano
3-folds. We will first talk about these, as a full classification indeed exists. In dimension 2 we
already saw that there are 10 families of del Pezzo surfaces. So, what about dimension 37

Again, there exists a full classification, due to Mori and Mukai in 1981 (with important
preliminary work by Iskovskikh), building on the results for which Mori eventually won the
Fields medal in 1990. There are 105 families in the classification: originally they listed 104, but



back in 2003 they found a missing case.

The geometry of Fano 3-folds is truly a treasure trove of interesting algebraic geometry, with
lots of ongoing work which falls outside the scope of this snapshot. Having a classification of
the objects is after all not the end of the work, but rather the beginning of the systematic study.

Fano 4-folds Having classified Fano varieties in dimensions 1, 2 and 3 we can turn to the
classification of Fano varieties in higher dimension. An important result from 1992 by Kollar—
Miyaoka—Mori is that in any dimension n, the number of deformation families is finite (we
continue to only consider smooth projective varieties). But we have no idea how large this
number really is. If we try to make the bound “effective” we end up with an upper bound of

(n+2) 2"

for the number of families of n-dimensional Fano varieties. For n = 1 this gives a number
with 3131 digits, which is very far off from the true value, which we saw is 1.

The first open case is the classification of Fano 4-folds. This is a large undertaking with
many people working on it from different perspectives, and this topic alone would make another
great Snapshot. Currently we have found about 700 families of Fano 4-folds, but we have no
idea how close we are to a full classification. We know that there is only a finite number, but we
don’t know we are close (say the total number is 1000) or still very far off (say the total number
is 100000). Hopefully within a few years we will know how to continue the sequence 1,10, 105.

One could also try to classify singular Fano varieties. The essential ingredient for this—the
finiteness of the classification problem—was provided recently by Birkar, for which he received
the Fields medal in 2018.

Calabi—Yau 3-folds Instead of going to higher-dimensional varieties with positive curvature,
we could consider 3-dimensional varieties with flat curvature: Calabi—Yau 3-folds. They are the
analogues of the K3 surfaces and abelian surfaces we saw before. These objects have played a
tremendously important role in theoretical physics and string theory, and given their importance
mathematicians have been constructing more and more of these. Their beautiful properties and
ongoing classification would form an excellent subject for yet another Snapshot.

But frustratingly enough, we don’t know whether the final classification in this case is a
finite classification or not! To give a precise number of the number of currently known families
of Calabi—Yau 3-folds is hard, because it requires a careful comparison of all the different
constructions. Let us just point out that one important type of construction (using reflexive
4-dimensional polytopes, of which there are a whopping 473 800 776) gives rise to 30 108 families
of Calabi—Yau 3-folds which are guaranteed to be different.

6 Hyperkahler varieties

One important theme that has been present is that the higher we go in dimension, the more
restrictive we want our class of varieties in order to have any hope of classification. The final
periodic table in algebraic geometry we want to discuss is one of the most mysterious.

Amongst the varieties of flat curvature there exists a decomposition into building blocks,
just like we can decompose molecules into atoms (for arbitrary varieties there is nothing like
such a decomposition). There are 3 types:

e abelian varieties of arbitrary dimension;

e Calabi—Yau varieties of dimension > 3;
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e hyperkahler varieties.

So the classification problem of varieties with flat curvature reduces to three different classifi-
cation problems.

We already discussed the classification of Calabi—Yau 3-folds, and in arbitrary dimension the
situation is the same: we don’t know whether the classification is finite, but we can construct
many (really, many!) examples. On the other hand, although they possess lots of interesting
geometry, the classification of abelian varieties is straightforward: in every dimension there is a
single family.

That leaves us with hyperkéahler varieties. These are necessarily even-dimensional, and
possess an extremely rich and beautiful geometry. Amongst all the varieties we discussed so
far, the only hyperkéhler varieties are K3 surfaces. Are there any others?

The first examples of dimension > 4 were obtained by Beauville in 1983. Using K3 surfaces
he constructed a family of hyperkédhler varieties of dimension 2n. We will call varieties of
this type K3, Similarly using abelian surfaces he constructed another family of hyperkéhler
varieties of dimension 2n. We will call varieties of this type Kum™. By computing a numerical
invariant of elements in these two families Beauville could moreover show that they are different
families.

Mathematicians have found other constructions of hyperkahler varieties, but they all were
similar to K3 and Kum” (in the precise sense that they are deformation equivalent). Is this
then the end of the classification? No!

In 1999 and 2003 O’Grady constructed two new families of hyperkéhler varieties, again
using K3 surfaces and abelian surfaces, but sufficiently different from the previous construction
in order to be truly new. Because they are 6- resp. 10-dimensional we will call them OGg
and OGqg. Currently they look “exceptional”, in the sense that they are seemingly not part of
a construction that works in arbitrary dimension.

Is this then the end of the classification? Are all hyperkihler varieties of type K3, Kum®,
OGg and OG19? We have absolutely no idea! Already in dimension 4 we don’t know
whether K3 and Kum? are all the types we need. There might be a type of hyperkahler
variety that has been hiding from us, like a beautiful butterfly deep within the rain forest. In
other words, we are still far from understanding the periodic table of hyperkéhler varieties.

Or are we? Mathematicians have come up with a curious conjecture that would describe
the periodic table of hyperkahler varieties. There is some similarity between this classification
and that of (certain) simple Lie algebras. The latter classification is a famous result from the
19th century, involving 2 infinite families, and 3 exceptional cases. So provided the speculation
is correct, we might be close to finding all the necessary objects. Maybe in a few years time
someone will be able to write a Snapshot about a proof of this conjecture.

Interactive periodic tables in algebraic geometry Do you want to see some “periodic
tables” in algebraic geometry in action? The author has created various interactive interfaces
for some of classification results:

e https://superficie.info: Enriques—Kodaira classification of surfaces (joint with Johan
Commelin)

e https://fanography.info! Mori-Mukai classification of Fano 3-folds
e https://hyperkaehler.info: classification of hyperkahler varieties

e https://grassmannian.info: generalised Grassmannians (not discussed)

It might be hard to really understand what is happening there, but hopefully it is clear that
mathematicians are truly interested in classifications.

11
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