Representation Theory I Bonn, summer term 2019 Prof. Dr. Catharina Stroppel Dr. Pieter Belmans

Sheet 7

Solutions to be handed in before class on Wednesday May 22

There is the following remark about last week's lecture:

In the argument that the coroot is unique one needs that in the last step the field has characteristic zero, since n should not be zero.

Problem 34. Let V be a finite-dimensional vector space over a field of characteristic 0. Let $R \subseteq V$ be an irreducible root system. Let W be the associated Weyl group. Show that V is an irreducible representation of W. (3 points)

Problem 35. Recall that the *Cartan matrix* of a root system is the matrix $(a_{j,i}) = (2(\alpha_i, \alpha_j)/(\alpha_j, \alpha_j))_{i,j}$, where $\alpha_1, \ldots, \alpha_n$ are the simple roots.

Recall that the *Dynkin diagram* of a root system is a visual representation of the Cartan matrix. It is a graph whose vertices correspond to the simple roots. An undirected single edge is drawn if the angle of the roots is 60° or 120° . A directed double edge is drawn if the angle is 45° or 135° , oriented from the longer to the shorter root, and likewise a directed triple edge is drawn if the angle is 30° or 150° .

- 1. Show that up to isomorphism there are 4 rank 2 root systems, and draw their pictures. (4 points)
- 2. Compute their Cartan matrices, and draw their associated Dynkin diagrams. (4 points)
- 3. Which of these are Langlands dual or self-dual? (2 points)

Problem 36. The root system of type B₂ is constructed in the previous exercise, and is the one involving double (and not single or triple) edges. If you haven't constructed the root system in the previous exercise, take a look at https://en.wikipedia.org/wiki/Root_system#/media/File:Root_system_B2.svg.

Compute the order of the Weyl group of type B_2 , and show which familiar group it is isomorphic to. (3 points)