Sheet 13

These exercises will not be graded, and solutions will be discussed in the tutoring session in the last week

Problem 62. Show the following properties.

- 1. If A = k[x], then any k-derivation d of A is of the form $d(g) = f(x) \frac{d}{dx}g$ for some $f(x) \in k[x]$. In other words, the space of derivations is free of rank 1 as an A-module.
- 2. If $A = k[x_1, \ldots, x_n]$, then the derivations $\partial/\partial x_i$ form a free basis of the space of k-derivations of A.
- 3. The k-algebra homomorphisms $\phi: A \to A[\epsilon]/(\epsilon^2)$ are in bijective correspondence with the set of k-derivations on A. The derivation corresponding to ϕ is d where $\phi(a) = a + d(a)\epsilon$.

Problem 63. Let $X = \mathbb{V}(I) \subseteq \mathbb{A}_k^n$ be an affine algebraic variety given by the vanishing set $\mathbb{V}(I)$ of the (ideal generated by) the polynomials $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$. The *tangent space* at $x \in X$ is defined as $\operatorname{Hom}_k(\mathfrak{m}_x/\mathfrak{m}_x^2, k)$, where \mathfrak{m}_x is the maximal ideal of $k[x_1, \ldots, x_n]$ which defines x.

- 1. Assume that $x = 0 \in X$. Show that $\mathfrak{m}_x/\mathfrak{m}_x^2$ is isomorphic to $(x_1, \ldots, x_n)/(I + (x_1, \ldots, x_n)^2)$, in other words, the tangent space of X at $0 \in X$ is identified with the degree 1 parts of the f_i 's.
- 2. Show that the tangent space at (0,0) for the affine curve $x^2 y^3$ is 2-dimensional.
- 3. Show that the tangent space at (0,0) for the affine curve $x^2 y^2$ is 2-dimensional.
- 4. Show that the tangent space at (0,0,0) for the affine surface $x y^4 z^7$ is 2-dimensional, spanned by $\partial/\partial y$ and $\partial/\partial z$.

Problem 64. Let \mathfrak{g} be a complex semisimple Lie algebra, and $\mathfrak{h} \subseteq \mathfrak{g}$ a Cartan subalgebra. Denote by χ_{λ} the central character of the Verma module $M(\lambda)$, where $\lambda \in \mathfrak{h}^*$.

Let $\lambda, \mu \in \mathfrak{h}^*$. Show that if $\lambda \sim \mu$, then $\chi_{\lambda} = \chi_{\mu}$.