Representation Theory II Bonn, winter term 2019–2020 Prof. Dr. Catharina Stroppel Dr. Pieter Belmans

Sheet 9

Solutions to be handed in before class on Friday December 13.

Problem 40. Let *C* be an irreducible curve (i.e. a closed subvariety of dimension 1) of degree *d* (i.e. given by a homogeneous polynomial of degree *d*) in \mathbb{P}^2 .

- 1. Prove that $[C] = d[\Omega_{s_1}]$.
- 2. Consider the excision sequence. Explain how it is compatible with the grading.
- 3. Determine the Chow group $A^1(\mathbb{P}^2 \setminus C)$.
- 4. Determine the Chow group $A^i(\mathbb{P}^n \setminus X)$ for i = 0, ..., n m, where X is a subvariety of dimension m < n and degree d.

(5 points)

Problem 41. Consider the Chow ring for $\mathbb{P}^1 \times \mathbb{P}^1$. Recall that curves on $\mathbb{P}^1 \times \mathbb{P}^1$ are described using bihomogeneous polynomials in x_1, x_2, y_1, y_2 , i.e. they are homogeneous in x_1, x_2 and homogeneous (of possibly different degree) in y_1, y_2 .

1. Prove that $A^2(\mathbb{P}^1 \times \mathbb{P}^1) \cong \mathbb{Z}$, i.e. that all points are rationally equivalent to a given point (assuming that the class of a point is nonzero).

(2 points)

2. Using that $A^1(\mathbb{P}^1)$ is naturally isomorphic to $A^1(\mathbb{P}^1 \times \mathbb{A}^1)$, prove that

$$A^{1}(\mathbb{P}^{1} \times \mathbb{P}^{1}) \cong \mathbb{Z} \oplus \mathbb{Z}.$$
(23)

(3 points)

 Construct a cell decomposition for P¹ × P¹, and give an alternative proof of points 1 and 2.

(2 points)

Problem 42. Continuing with the setup of Problem 41 we wish to compute the ring structure of the Chow ring $A^{\bullet}(\mathbb{P}^1 \times \mathbb{P}^1)$.

1. Consider the subvarieties $C := \{ pt \} \times \mathbb{P}^1$ and $D := \mathbb{P}^1 \times \{ pt \}$. Compute the intersection products C^2 and CD.

(2 points)

2. Let C (resp. D) be a curve of bidegree (c_1, c_2) (resp. (d_1, d_2)) under the isomorphism (23). Determine CD.

(2 points)