Representation Theory II Bonn, winter term 2019–2020 Prof. Dr. Catharina Stroppel Dr. Pieter Belmans

Sheet 8

Solutions to be handed in before class on Friday December 6.

Problem 35. Show that the dimension of the Schubert variety is the maximum of the dimensions of the Schubert cells contained in it.

(1 point)

Problem 36. Using problems 12 and 13, describe the Schubert variety for $s_1s_3s_2$ as the intersection of the Grassmannian Gr(2, 4) (which is a quadric in \mathbb{P}^5) with the tangent space at the identity element. Conclude that this Schubert variety is singular.

(3 points)

Problem 37. 1. Show that a Schubert variety is irreducible.

2. Show that X = Gr(d, n) and Fl_d have a stratification

$$X = X_0 \supseteq X_1 \supseteq \ldots \supseteq X_s = \emptyset \tag{15}$$

where X_i is closed, and $X_i \setminus X_{i+1}$ is the disjoint union of affine spaces (of possibly different dimension).

(2 points)

These properties show that the cohomology ring (which is an associative and commutative graded ring in degrees $0, \ldots, d$ where d is the dimension) of these flag varieties has as an additive basis the classes of Schubert varieties, with the class of a Schubert variety of codimension c in degree 2c. In particular we also have from the general formalism that:

- 1. there is a unique class in the top degree (why is this the case in our setting?)
- 2. if two subvarieties of complementary dimension meet transversally in precisely t points, then the product of their classes is t times the unique class in top degree.

Problem 38. We want to understand the intersection of a Schubert variety Ω_{λ} and an opposite Schubert variety $\tilde{\Omega}_{\mu}$ in $\operatorname{Gr}(r, m)$. We will denote F_{\bullet} the standard flag, and \tilde{F}_{\bullet} the opposite flag. We denote

$$A_{i} \coloneqq F_{n+i-\lambda_{i}}$$

$$B_{i} \coloneqq \tilde{F}_{n+i-\mu_{i}}$$

$$C_{i} \coloneqq A_{i} \cap B_{r+1-i}$$
(16)

for $1 \leq i \leq r$, where $n \coloneqq m - r$.

1. Show that C_i is spanned by those vectors e_i for which

$$i + \mu_{r+1-i} \le j \le n + i - \lambda_i, \tag{17}$$

so that

$$\dim C_i = n + 1 - \lambda_i - \mu_{r+1-i} \tag{18}$$

if the right-hand side is nonnegative, and $C_i = 0$ otherwise.

(2 points)

2. If Ω_{λ} and $\widetilde{\Omega}_{\mu}$ are not disjoint, then

$$\lambda_i + \mu_{r+1-i} \le n \tag{19}$$

for all $1 \leq i \leq r$.

(2 points)

3. Assume that $|\lambda| + |\mu| = r(m-r)$. Show that the intersection of Ω_{λ} and $\tilde{\Omega}_{\mu}$ is

$$\Omega_{\lambda} \cap \tilde{\Omega}_{\nu} = \begin{cases} \{ \text{pt} \} & \text{if } \lambda_i + \mu_{r+1-i} = n \text{ for all } 1 \le i \le r \\ \emptyset & \text{if } \lambda_i + \mu_{r+1-i} > n \text{ for some } i \end{cases}$$
(20)

In the language of cohomology rings (or Chow rings), this means for the Schubert classes $\sigma_{\lambda} = [\Omega_{\lambda}]$ and $\sigma_{\mu} = [\tilde{\Omega}_{\mu}]$ that

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \begin{cases} 1 & \lambda \text{ and } \mu \text{ dual} \\ 0 & \text{otherwise} \end{cases}$$
(21)

for λ and μ as above, and dual meaning that $\mu_i = n - \lambda_{r+1-i} - i$. (3 points)

Problem 39. Compute the ring structure of the cohomology ring of Gr(2, 4), using Pieri's rule, which for a Grassmannian Gr(d, n) says that

$$\sigma_{\lambda} \cdot \sigma_k = \sum_{\lambda'} \sigma_{\lambda'} \tag{22}$$

where λ' runs over the Young diagrams obtained from λ obtained by adding k boxes, but never more than one in a single column. Here σ_k is the special Schubert variety, associated to $\lambda = (k)$.

Describe all non-zero products of Schubert classes.

(3 points)