Representation Theory II Bonn, winter term 2019–2020

Sheet 7

Solutions to be handed in before class on Friday November 29.

Problem 32. Consider a Coxeter group (W, S).

- 1. Show that the Bruhat order on W is a *directed* poset, i.e. for all $x, y \in W$ there exists a $z \in W$ such that $x \leq z$ and $y \leq z$.
- 2. If W is finite, show that there exists a longest element w_0 , and describe it for $W = S_n$ and S the simple transpositions.
- 3. Define the *interval* [x, y] for $x, y \in W$ as

$$[x,y] \coloneqq \{z \mid x \le z \le y\}.$$

$$(12)$$

Show that [x, y] is finite, by giving an explicit upper bound.

- 4. Show that there exists a unique dense *B*-orbit in G/B, where $G = GL_n(\mathbb{C})$.
- 5. Show that this orbit is open.

(8 points)

Problem 33. Let G be an algebraic group, and $B \subseteq G$ a closed subgroup (feel free to assume $G = \operatorname{GL}_n(\mathbb{C})$ and B the standard Borel). Show that there exists a bijection between

1. G-orbits of the diagonal G-action on $G/B \times G/B$ (i.e. g(x, y) = (gx, gy));

2. *B*-orbits of the *G*-action on G/B.

Using this, describe the fibres of the projection

$$\operatorname{pr}_1: G/B \times G/B \to G/B.$$
 (13)

(3 points)

Problem 34. Consider the *Hilbert scheme of* n *points on* $\mathbb{A}^2_{\mathbb{C}}$, which as a set is given by the ideals in $\mathbb{C}[x, y]$ of colength n, i.e.

$$\operatorname{Hilb}^{n} \mathbb{A}^{2}_{\mathbb{C}} = \{ I \triangleleft \mathbb{C}[x, y] \mid \dim_{\mathbb{C}} \mathbb{C}[x, y] / I = n \}.$$

$$(14)$$

We will use without proof that it is a quasiprojective variety.

There exists an action of the torus $T = (\mathbb{C}^{\times})^2$ on $\mathbb{A}^2_{\mathbb{C}}$ by $(t_1, t_2) \cdot (x, y) = (t_1x, t_2y)$ for $(t_1, t_2) \in (\mathbb{C}^{\times})^2$ and $(x, y) \in \mathbb{A}^2_{\mathbb{C}}$. This induces an action on the regular functions $\mathbb{C}[x, y]$ in the usual way.

- 1. Show that this induces an action of T on Hilbⁿ $\mathbb{A}^2_{\mathbb{C}}$.
- 2. Show that the torus fixed points are precisely the monomial ideals, i.e. ideals generated by monomials.
- 3. Set up a correspondence between monomial ideals and partitions of n, by considering the generators of the monomial ideal.

(5 points)