Sheet 3

Solutions to be handed in before class on Wednesday (!) October 30.
Problem 16. Let G be a linear algebraic group, and H a closed subgroup. Show that

$$
\begin{equation*}
(G \times G) /(H \times H) \cong G / H \times G / H \tag{3}
\end{equation*}
$$

as varieties.
Problem 17. Prove Rosenlicht's theorem, which states that if a unipotent closed subgroup H of GL_{n} acts on an affine variety $X=\operatorname{Spec} A$, then all of its orbits are necessarily closed. Here a (sub)group is unipotent if all of its elements are unipotent. U in $G=\mathrm{GL}_{n}$, unipotent subgroup

1. Show that if a linear algebraic group G acts on an affine variety $X=$ $\operatorname{Spec} A$ we get that A is a G-representation, which is moreover locally finite-dimensional, i.e. every element $a \in A$ is contained in finite-dimensional subrepresentation of A. Here one uses the coaction $A \rightarrow A \otimes \mathbb{C}[G]$.
2. Prove that a unipotent closed subgroup H of GL_{n} can be conjugated into the (unipotent) subgroup U_{n} of upper triangular matrices.
3. Now replace the action of G on the closure of an orbit, and assume that the orbit isn't closed. How do elements of U_{n} act on the defining ideal?
(7 points)

Problem 18. Show that the projection map $\pi: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{m}$ is closed.

Hints

1. A closed subset Z of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ can be written as the vanishing locus of bihomogeneous polynomials of degree (a, b) such that $a+b=d$ is fixed. This the straightforward generalisation of the same statement for a closed subset of \mathbb{P}^{n}, starting from $\mathrm{V}(f)=\mathrm{V}\left(x_{0}^{d} f, \ldots, x_{n}^{d} f\right)$.
2. Prove that $a \in \mathbb{P}^{m}$ is not contained in $\pi(Z)$ if and only if the degree k part of $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ is contained in $\left(g_{1}, \ldots, g_{r}\right)$ for some $k \in \mathbb{N}$, where g_{i} is the partial evaluation of f_{i}, and Z is cut out by $\left(f_{1}, \ldots, f_{r}\right)$.
3. In that situation, explain why the map

$$
\begin{equation*}
F_{k}:\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k-d}\right)^{\oplus r} \rightarrow \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}=\left(g_{1}, \ldots, g_{r}\right)_{k} \tag{4}
\end{equation*}
$$

needs to be surjective, and how this leads to a Zariski-open condition.
(6 points)

