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1. Parallels between quivers and curves

There are many parallels between moduli spaces Mθ-ss
Q (d) of semistable quiver

representations and moduli spaces MC(r, d) of semistable vector bundles on a
curve C. Here we consider a quiver Q = (Q0, Q1) and finite-dimensional repre-
sentations of Q with dimension vector d, which are semistable with respect to a
stability function θ : ZQ0 → Z such that θ(d) = 0 (resp. semistable bundles of
rank r and degree d, where C has genus g ≥ 2). Some of these parallels are dis-
cussed in [6], and there are others (such as similarities in the structure of their
Brauer groups, or rationality questions).

The parallel I wish to focus on is their (usual) construction in algebraic geometry
via geometric invariant theory (GIT). Using the notion of (semi)stability for quiver
representations [7] (resp. for vector bundles [8]) one considers

• the open locus of Rep(Q,d) =
∏
i∈Q0

Ad(i)
k

• resp. a suitable Quot scheme (obtained from making all bundles globally
generated)

corresponding to semistable objects, and then quotients out

• the conjugation action by GLd =
∏
i∈Q0

GLd(i)

• resp. the action of GLN , where N is the dimension of the global sections
after twisting.

The moduli space of semistable quiver representations is projective-over-affine,
the base affine variety being the spectrum of the invariant ring (from the zero sta-
bility function), which by Le Bruyn–Procesi is generated by traces along cycles. In
particular, if Q is acyclic the resulting moduli space of semistable representations
is projective. The moduli space of semistable vector bundles is always projective.

Nowadays there are many (more complicated) moduli spaces being studied,
e.g. moduli spaces of Bridgeland-semistable objects [9]. For these no GIT-construction
is available, so a GIT-free construction is needed. The general program is to:

(1) interpret the moduli problem of interest as an algebraic stack M of finite
type;

(2) prove that there exists a good moduli space M , and show it is a proper
algebraic space via the valuative criterion for universal closedness for M;

(3) descend a line bundle to M and check its ampleness.

For step (2), if M has finite stabilisers, then the Keel–Mori theorem provides
coarse moduli space M . If M has infinite stabilisers, one can use the recent
Alper–Halpern-Leistner–Heinloth existence criterion [2, Theorem A].
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For step (3) one uses the moduli-theoretic interpretation of the space and the
line bundle to produce sections thereof, in order to check ampleness.

By implementing this program for well-known moduli spaces one can start to
understand more complicated constructions, and also obtain additional results in
these classical cases. The program is explained for MC(r, d) in [1]. For the Deligne–
Mumford compactification Mg of the moduli space of curves (which is also usually
constructed using GIT) it is explained in [4].

In the next section I will briefly explain the structure of the program in the
case of quiver representations, which is the novel joint work I’m reporting on [3].
In this abstract we work over an algebraically closed field k of characteristic 0, so
that we avoid adequate moduli spaces and geometrically stable representations,
but op. cit. is written in greater generality.

2. Projectivity for moduli spaces of quiver representations

Let us assume that Q is acyclic in what follows. Step (1) consists of writ-
ing the usual setup in a suitable functor-of-points language and quickly deducing
the necessary properties. For step (2) one applies the Alper–Halpern-Leistner–
Heinloth existence criterion for the moduli stack Mθ-ss

Q (d), by explicitly checking
Θ-reductivity, S-completeness, and the valuative criterion for universal closedness.
The latter is done by giving a version of Langton’s semistable reduction for quiver
representations. The existence criterion then yields a good moduli space Mθ-ss

Q (d),
and shows it is a proper algebraic space.

In order to show projectivity we need a line bundle on Mθ-ss
Q (d) for which we

can prove ampleness. In the setting of vector bundles on a curve such line bundles
are provided by descending determinantal line bundles from the moduli stack:
considering the Fourier–Mukai functor given by the universal vector bundle, a
vector bundle F on C gives a 2-term complex of vector bundles on the moduli
stack. One can take the determinant of this complex to obtain a line bundle on
the moduli stack, which only depends on the numerical invariants of F . If the rank
and degree of F are chosen appropriately so that χ(C,E ⊗ F ) = 0 (where E has
rank r and degree d) it is possible to descend this line bundle to the good moduli
space, and moreover construct a section of this line bundle (which does depend on
the isomorphism class of F ).

A similar construction can be done for moduli of quiver representations using
the universal representation. Suitably interpreted in concrete terms (which is how
Schofield originally introduced them): if M is a d-dimensional representation,
and N is e-dimensional, we define

(1) dMN :
⊕
i∈Q0

Homk(Mi, Ni)→
⊕
α∈Q1

Homk(Mt(α), Nh(α))

as

(2) dMN : (φi)i∈Q0 7→ (φh(α) ◦Mα −Nα ◦ φt(α))α∈Q1 .

If 〈d, e〉 = 0, then dMN is in fact a square matrix, and following Schofield we define
the determinantal semi-invariant c(M,N) := det dMN . In what follows we will
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usually fix some N (or more precisely try to construct one with special properties)
so that c( , N) can be seen as a section of a determinantal line bundle onMθ-ss

Q (d).
One important result on these determinantal semi-invariants is that by varying
over all N of dimension vector e orthogonal to d they span the ring of semi-
invariants (as a vector space), a result independently proven by Derksen–Weyman,
Schofield–Van den Bergh and Domokos–Zubkov. The semi-invariant c( , N) has
weight −〈 , e〉.

The next step is to produce enough determinantal semi-invariants to show that
the determinantal line bundles (for an appropriate choice of multiple of the dimen-
sion vector e) is basepoint-free. This can be done using the analogue of Faltings’s
characterization of semistable vector bundles, which says that a vector bundle
is semistable if and only if there exists a vector bundle orthogonal in the sense
from above for which HomC(F∨, E) = Ext1C(F∨, E) = 0. Such characterizations
were known already to Schofield(–Van den Bergh) and Crawley-Boevey. But in-
terestingly, from our proof we also obtain effective bounds on which power of this
semiample determinantal line bundle becomes basepoint-free.

The final step, where truly new ingredients are needed, is to prove for an acyclic
quiver Q that determinantal line bundle is ample, and not just semiample. This
is done by performing a dimension count, which for curves is done in [5]. The
semiample determinantal line bundle provides us with a morphism from a proper
algebraic space to some PN , and by constructing suitable determinantal semi-
invariants we can separate enough points to prove that this map is finite, thus the
determinantal line bundle is ample. This part of the argument builds upon the
(limited) compatibility between Auslander–Reiten functors and semistability.
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