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In this talk I gave a brief history of semiorthogonal decompositions, explained
how they can be studied using Fourier–Mukai transforms, and how they behave
in families. What follows is an overview of the historical motivation with addi-
tional references, and a summary of the results on moduli spaces of semiorthogonal
decompositions.

1. Semiorthogonal decompositions

For an introduction to semiorthogonal decompositions, and many more exam-
ples, one is referred to [13]. They are introduced to understand the structure of
the derived category of coherent sheaves of a smooth projective variety X, from
now on denoted Db(X).

A brief history of semiorthogonal decompositions: 3 examples
In [2] Bĕılinson described the derived category of Pn, starting the whole field.

Example 0.1. Using the usual notation for exceptional collections we have that

(1) Db(Pn) = 〈OPn ,OPn(1), . . . ,OPn(n)〉
Here all the admissible subcategories are equivalent to Db(k).

The next step came with the introduction of semiorthogonal decompositions by
Bondal–Orlov in [6].

Example 0.2. The first example is given by the (smooth) intersection of two
even-dimensional quadrics X = Q1 ∩Q2 in P2g+1, for which we have

(2) Db(X) = 〈Db(C),OX ,OX(1), . . . ,OX(2g − 3)〉
where C is a hyperelliptic curve of genus g. As we will discuss in the next example,
Db(C) cannot be decomposed further, so this is a semiorthogonal decomposition
into “atomic” components.

By now there exists a vast literature on exceptional collections and semiorthog-
onal decompositions. The final example we want to give discusses the absence of
non-trivial semiorthogonal decompositions.

Example 0.3. Let X be either a Calabi–Yau variety, or a curve of genus g ≥ 2.
Then by Bridgeland [7] resp. Okawa [14, Theorem 1.1] we have that Db(X) is
indecomposable.

Families of varieties Once one understands a semiorthogonal decomposition
of one fibre in a family, what can be said about semiorthogonal decompositions
for other fibres?

An important guiding principle here is Dubrovin’s conjecture [8]. It states

that BQH•(X) is (generically) semisimple if and only if Db(X) admits a full
exceptional collection. But BQH•(X) depends on the symplectic, not the complex
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structure of X. Hence conjecturally the existence of full exceptional collection is
constant in nice families. A more general version of this conjecture for arbitrary
semiorthogonal decompositions can be found in [17].

The behavior of exceptional collections in families is studied in [10] using Lieblich’s
deformation theory of perfect complexes. Full exceptional collections are shown to
extend to étale neighbourhoods. In what follows we discuss how this deformation
theory result generalises, by constructing an actual moduli space of semiorthogonal
decompositions with arbitrary components.

2. The moduli space of semiorthogonal decompositions

The general procedure to make exceptional collections and semiorthogonal de-
compositions behave well in a family over a base S is that of S-linearity [12]. The
main result is then following [4, Theorem A].

Theorem 1. Let f : X → S be a smooth projective morphism, where S is an
excellent scheme. Then there exists an algebraic space SODf → S, such that

(1) SODf → S is étale;
(2) there exists a functorial bijection between SODf (T → S) and the set of T -

linear semiorthogonal decompositions (of length 2) of Perf X ×T S.

The proof consists of checking Artin’s axioms for étale algebraic spaces, in the
form of Hall–Rydh [9, Theorem 11.3]. For this we use that S-linear semiorthogonal
decompositions can be represented using (morphisms of) Fourier–Mukai kernels.
The main technical ingredient is then a deformation theory of morphisms of com-
plexes in a derived category (with a fixed lift of the codomain), generalising the
deformation theory of complexes.

The main important geometric feature of this moduli space (which is rather
strange in other respects, see §3) is that it is étale over S. This is consistent with
the suggestion of Dubrovin’s conjecture.

Application: indecomposability We can use the moduli space of semiorthog-
onal decompositions to show that having an indecomposable derived category spe-
cialises in a family of smooth projective varieties. The details for this are contained
in the joint work [1] with Francesco Bastianelli. We can obtain for example the
following result.

Theorem 2. Let C be a smooth projective curve of genus g ≥ 2. Let n =
1, . . . , b g+3

2 c − 1. Then Db(Symn C) is indecomposable.

Its proof is obtained by bootstrapping from the indecomposability result [11,
Theorem 1.4], analysing the relationship between the gonality of a curve and
the base locus of the canonical linear system (see also [5]). This theorem set-
tles (the easier) half of [3, Conjecture 2], which suggests the indecomposability

of Db(Symn C) for n up to g − 1.
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3. Examples, pathologies and amplifications

By describing SODf in 3 instances, we can see how this algebraic space has an
interesting geometry, and what kind of variations we can moreover study.

Example 2.1. Let f : X → Spec k be an example from Example 0.3. Then SODf

consists of two points, given by the trivial semiorthogonal decompositions 〈Db(X), ∅〉
and 〈∅,Db(X)〉.

To remedy this, one can study the open and closed algebraic subspace ntSODf ⊂
SODf , only parametrising non-trivial semiorthogonal decompositions.

More interestingly we can consider Bĕılinson’s semiorthogonal decompositions
from Example 0.1.

Example 2.2. For n = 1 (folklore) and n = 2 [16] there exists a classifica-

tion of semiorthogonal decompositions of Db(Pn). For f : P1 → Spec k it shows
that ntSODf =

⋃
i∈Z Spec k, indexing the decomposition 〈OP1(i),OP1(i + 1)〉.

This shows that SODf and ntSODf are usually not quasicompact. It also
shows the necessity to extend the definition of the moduli space to incorporate
semiorthogonal decompositions of length `. This can be done, and yields moduli
spaces SOD`

f and ntSOD`
f with similar properties.

One can show that SOD`
f and ntSOD`

f admit (commuting) actions by the
group Auteq(f) of f -linear autoequivalences and the braid group Br` acting by
mutations. The quotient by these groups might yield more tractable moduli spaces.

Finally, the most interesting behaviour is showcased by the following example.

Example 2.3. Let f : X → A1 be the degeneration of P1 × P1 into the second
Hirzebruch surface F2 (at the point 0 ∈ A1). By comparing the classification
of exceptional objects for the quadric with the results of [15], one can construct
distinct families of exceptional objects, which agree on A1 \ {0}, but give different

exceptional objects in Db(F2).

This shows that SODf can in general be non-separated. This is an important
feature of the behavior of semiorthogonal decompositions in families, and it would
be interesting to understand this in more instances.
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