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Introduction

What you are reading now are the lecture notes for a course on Hochschild (co)homology, taught at the
University of Bonn, in the Sommersemester of 2017–2018. They are currently being written, and regularly
updated. The table of contents is provisional.

The goal of the course is to give an introduction to Hochschild (co)homology, focussing on

1. its applications in deformation theory of algebras (and schemes)

2. and the role of the Hochschild–Kostant–Rosenberg decomposition in all this.

There are by many several texts on various aspects of Hochschild (co)homology. In particular the

following books dedicate some chapters on Hochschild (co)homology:

1. chapter IX in Cartain–Eilenberg’s Homological algebra [9],

2. the �rst chapters of Loday’s Cyclic homology [39],

3. chapter 9 of Weibel’s An introduction to homological algebra [65],

4. chapter 2 by Tsygan in Cuntz–Skandalis–Tsygan’s Cyclic homology in noncommutative geometry
[10],

5. chapter II by Schedler in the Bellamy–Rogalski–Schedler–Sta�ord–Wemyss’ Noncommutative
algebraic geometry [4].

There are also the following unpublished lecture notes:

1. Ginzburg’s Lectures on noncommutative geometry [18]

2. Kaledin’s Tokyo lectures [27] and Seoul lectures [28].

There is also Witherspoon’s textbook-in-progress called An introduction to Hochschild cohomology [67],

which is dedicated entirely to Hochschild cohomology and some its applications. So far this is the

only textbook dedicated entirely to Hochschild (co)homology, and it is a good reference for things not

covered in these notes.

Compared to the existing texts these notes aim to focus more on Hochschild (co)homology in algebraic

geometry, using derived categories of smooth projective varieties. This point of view has been developed

in several papers [7, 8, 37] and applied in many more dealing with semiorthogonal decompositions. But

there is no comprehensive treatment, let alone starting from the basics of Hochschild (co)homology

for algebras. These notes aim to �ll this gap, where we start focussing on smooth projective varieties

starting in the second half of chapter II.

Now that we know what is supposed to go in this text, let us mention that the following will not be

discussed: the relationship with algebraic K-theory via Chern characters, support varieties, deformation

theory of abelian and dg categories, applications to Hopf algebras, topological versions of Hochschild

(co)homology and related constructions, . . .
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Chapter I

Algebras

Conventions Throughout these notes we will let k be a �eld. It is possible to develop much of the

theory in the case for algebras which are �at over a commutative base ring without much extra e�ort,

but we will not do so explicitly. The interested reader is invited to do so. There are also versions which

are valid in a more general setting, but will refrain from discussing these.

At some points we will take k of characteristic zero, or algebraically closed. This will be mentioned

explicitly.

If A is a k-algebra we will denote the enveloping algebra A ⊗Aop
of A by Ae

, so that A-bimodules are the

same as left Ae
-modules.

1 De�nition and �rst properties

1.1 Hochschild (co)chain complexes

We start with a seemingly ad hoc de�nition.

De�nition 1. Let A be a k-algebra. The bar complex C
bar

• (A) of A is the cochain complex

(1) . . .
d2

→ A ⊗k A ⊗k A
d1

→ A ⊗k A→ 0,

of A-bimodules, where we have C
bar

n (A) B A⊗n+2, hence A ⊗k A lives in degree 0, and the di�eren-

tials dn : C
bar

n (A) → C
bar

n−1 (A) are given by

(2) dn (a0 ⊗ . . . ⊗ an+1) =
n∑
i=0

(−1)ia0 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ an+1.

The A-bimodule structure (or equivalently left Ae
-module structure) on C

bar

n (A) is given by

(3) (a ⊗ b) · (a0 ⊗ . . . ⊗ an+1) = aa0 ⊗ a1 ⊗ . . . ⊗ an ⊗ an+1b .

We will also consider the morphism d0 : A ⊗k A→ A, which by the formula for dn is nothing but the

multiplication morphism µ : A ⊗k A→ A.

Remark 2. The terminology “bar complex” originates from the fact that an element a0 ⊗ . . . ⊗ an+1 is

sometimes denoted a0[a1 | . . . |an]an+1.
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Before we start studying the bar complex (for instance, at this point we haven’t proven it is a complex),

we introduce the following morphisms:

(4) sn : A
⊗n+2 → A⊗n+3 : a0 ⊗ . . . ⊗ an+1 7→ 1 ⊗ a0 ⊗ . . . ⊗ an+1.

Given that this is the �rst proof we will give details. We will see many similar proofs throughout the

beginning of the notes, we will leave some of them as exercises.

Lemma 3. We have that

(5) dn+1 ◦ sn + sn−1 ◦ dn = idA⊗n+2 .

Proof. One computes that

(6)

sn−1 ◦ dn (a0 ⊗ . . . ⊗ an )

=

n∑
i=0

(−1)i1 ⊗ a0 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ an+1,

dn+1 ◦ sn (a0 ⊗ . . . ⊗ an )

= a0 ⊗ . . . ⊗ an+1 +
n+1∑
i=1

(−1)i1 ⊗ a0 ⊗ . . . ⊗ ai−1ai ⊗ . . . ⊗ an+1,

so everything but the identity cancels after reindexing. �

We can check that the di ’s indeed turn C
bar

• (A) into a chain complex.

Lemma 4. We have that dn−1 ◦ dn = 0.

Proof. Let us consider n = 1 �rst. Then d0 ◦ d1 (a0 ⊗ a1 ⊗ a2) = (a0a1)a2 − a0 (a1a2), which is zero as A
is associative.

For n ≥ 2 we use induction, using (5). We have

(7) dn ◦ dn+1 ◦sn = dn − dn ◦sn−1 ◦ dn = sn−2 ◦ dn−1 ◦ dn = 0,

but as the image of sn generates A⊗n+3 as a left A-module we get that dn ◦ dn+1 = 0. �

The bar complex didn’t include A, but if we use the morphism d0 : A ⊗k A→ A as de�ned above we get

the following proposition.

Proposition 5. The bar complex of A is a free resolution of A as an A-bimodule, where the augmenta-

tion d0 : A ⊗k A→ A is given by the multiplication.

Proof. By lemma 3 we see that the si ’s provides a contracting homotopy, hence the bar complex is exact,

as a complex of A-bimodules.

We also check that the cokernel of d1 is indeed the multiplication A ⊗k A→ A. For this it su�ces to

observe that

(8) d1 (a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2 − a0 ⊗ a1a2,

and that there exists a map coker d1 → A mapping the class of a0 ⊗ a1 to a0a1. By the de�nition of d1 it

sends elements of im d1 to zero, so it is well-de�ned. Its inverse is given by the morphism which sends a
to 1 ⊗ a.
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That C
bar

n (A) is free as an A-bimodule follows from the isomorphisms of A-bimodules

(9) A⊗n+2 � Ae ⊗ A⊗n �
⊕
i ∈I

Ae · 1 ⊗ 1 ⊗ ai

where {ai | i ∈ I } is a vector space basis of A⊗n , and the �rst isomorphism is

(10) a0 ⊗ . . . ⊗ an+1 7→ (a0 ⊗ an+1) ⊗ a1 ⊗ . . . ⊗ an .

�

De�nition 6. Let A be a k-algebra, and M an A-bimodule. The Hochschild chain complex C• (A,M )
is M ⊗Ae C

bar

• (A), considered as a complex of k-modules, with di�erential idM ⊗ dn .

Its homology is the Hochschild homology ofAwith values inM , and will be denoted HH• (A,M ). If M = A,

we’ll write HHn (A).

Dual to this we could instead of the tensor product use the Hom-functor, and obtain the dual notion of

Hochschild cohomology.

De�nition 7. Let A be a k-algebra, and M an A-bimodule. The Hochschild cochain complex C
• (A,M )

is HomAe (Cbar

• (A),M ), considered as a complex of k-modules, with di�erential Hom(dn , idM ).

Its cohomology is the Hochschild cohomology of A with values in M , and will be denoted HH
• (A,M ).

If M = A, we’ll write HH
n (A).

Remark 8. Observe that one can recover the bar complex from the Hochschild complex:

(11) C
bar

• (A) = C• (A,A
e).

Reinterpreting the Hochschild cochain complex The Hochschild (co)chain complexes were ob-

tained by considering a speci�c free resolution of A as an A-bimodule, and constructing a (co)chain

complex of vector spaces out of it. We can rephrase this complex of vector spaces a bit, where instead

of HomAe (−,−) and − ⊗Ae −, we use Homk (−,−) and − ⊗k −. This will be very useful for computations

later on.

The proofs of the following two propositions follow from the fact that Ae
only involves the �rst and

last tensor factor of a bimodule in the bar complex. The following proposition is then a consequence of

the adjunction

(12) − ⊗k A
e
: Modk � ModAe

: res.

The explicit formula for the Hochschild di�erentials in (16) and (20) will be important for us in section 1.3.

Proposition 9. There exists an isomorphism of k-modules

(13) φ : Cn (A,M )
�
→ Homk (A

⊗n ,M ),

given by

(14) д 7→
[
a1 ⊗ . . . ⊗ an 7→ д(1 ⊗ a1 ⊗ . . . ⊗ an ⊗ 1)

]
,

whose inverse is given by

(15) f 7→
[
a0 ⊗ . . . ⊗ an+1 7→ a0 f (a1 ⊗ . . . ⊗ an )an+1

]
.
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The di�erential in Homk (A
•,M ) is then given by

(16)

dHoch f (a1 ⊗ . . . ⊗ an+1)

= a1 f (a2 ⊗ . . . ⊗ an+1)

+

n∑
i=1

(−1)i f (a1 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ an+1)

+ (−1)n+1 f (a1 ⊗ . . . ⊗ an )an+1

for f ∈ Homk (A
⊗n ,M ).

Proposition 10. There exists an isomorphism of k-modules

(17) ψ : C• (A,M )
�
→ M ⊗k A

•

given by

(18) ψ (m ⊗Ae a0 ⊗ . . . ⊗ an+1) = an+1ma0 ⊗ a1 ⊗ . . . ⊗ an ,

whose inverse is given by

(19) m ⊗ a1 ⊗ . . . ⊗ an 7→m ⊗Ae 1 ⊗ a1 ⊗ . . . ⊗ an ⊗ 1.

The di�erential dHoch : M ⊗k A
⊗n → M ⊗k A

⊗n−1
is then given by

(20)

dHoch (m ⊗ a1 ⊗ . . . ⊗ an )

=ma1 ⊗ . . . ⊗ an

+

n−1∑
i=1

(−1)im ⊗ a1 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ an

+ (−1)nanm ⊗ a1 ⊗ . . . ⊗ an−1

form ⊗ a1 ⊗ . . . ⊗ an ∈ M ⊗k A
⊗n

.

Functoriality of Hochschild (co)homology Given an algebra morphism f : A → B, or a bimod-

ule morphism д : M → N , we would like to understand how this interacts with taking Hochschild

(co)homology. First of all: Hochschild homology is covariantly functorial in both arguments.

Proposition 11. Let f : A → B be an algebra morphism, and M a B-bimodule (which has an in-

duced A-bimodule structure, denoted f ∗ (M )). Then

(21) f∗ : C• (A, f
∗ (M )) → C• (B,M ) :m ⊗ a1 ⊗ . . . ⊗ an 7→m ⊗ f (a1) ⊗ . . . ⊗ f (an )

gives a functor HH• (−,M ).

Let д : M → N be an A-bimodule morphism. Then

(22) д∗ : C• (A,M ) → C• (A,N ) :m ⊗ a1 ⊗ . . . ⊗ an 7→ д(m) ⊗ a1 ⊗ . . . ⊗ an

gives a functor HH• (A,−).

In particular, taking M = A we can use the covariant functoriality in both arguments for Hochschild

homology to get the following.
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Corollary 12. Hochschild homology HH• (−) is a covariant functor from the category of associa-

tive k-algebras to the category of k-modules.

For Hochschild cohomology the situation is di�erent: Hochschild cohomology is contravariantly functorial
in the �rst argument, and covariantly functorial in the second.

Proposition 13. Let f : A → B be an algebra morphism, and M a B-bimodule (which has an in-

duced A-bimodule structure). Then

(23) f ∗ : Cn (B,M ) → C
n (A,M ) : φ 7→ φ ◦ f ⊗n

gives a (contravariant) functor HH
• (−,M ).

Let д : M → N be an A-bimodule morphism. Then

(24) д∗ : C
n (A,M ) → C

n (A,N ) : φ 7→ д ◦ φ

gives a functor HH
• (A,−).

Remark 14. So HH
• (−) is not a functor (at least when we consider arbitrary morphisms between k-al-

gebras), despite its appearance. We will come back to this in remark 20, and we will partially remedy

this de�ciency in section 8.

At this point it is also important that in some sources it is written that HH
• (−) is a functor, see e.g. [40,

§1.5.4]. But this is not the same functor, despite the similarity in notation! Indeed, in those situations

one takes M = A∨ = Homk (A,k ) as the second argument. This makes the construction functorial (as

the covariant functor in the second argument becomes contravariant), but one does not obtain the

interpretation of Hochschild cohomology which will be used in this text. The construction in op. cit. has

applications in studying cyclic cohomology and generalisations of the Chern character, which we will

not go into here.

In section 8 we will greatly extend this functoriality for Hochschild homology, and discuss what can

be done in the case of Hochschild cohomology. Remark that in the next section’s corollary 16 we will

obtain that Hochschild cohomology is a functor for Morita equivalences.

1.2 Hochschild (co)homology as Ext and Tor

In these notes we have de�ned Hochschild (co)homology as the (co)homology of an explicit (co)chain

complex, which might seem ad hoc at �rst. But the bar complex of A being a free resolution of A
as a bimodule over itself allows us to interpret Hochschild (co)homology in terms of more familiar

constructions as explained in section 1.3.

Morover, the de�nition via the bar complex gives us an explicit description which will prove to be very

useful in section 2 when we are discussing the extra structure on the Hochschild (co)chain complexes,

which can conveniently be described by extra structure before taking cohomology. But it is of course an

interesting question to �nd good intrinsic descriptions of the extra structure, and we will give further

comments on this.

Theorem 15. There exist isomorphisms

(25) HH
i (A,M ) � Ext

i
Ae (A,M )

and

(26) HHi (A,M ) � Tor
Ae

i (A,M ).
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Proof. By proposition 5 the bar complex is a free resolution of A as an A-bimodule. In particular

it can serve as a �at (resp. projective) resolution when computing the derived functors of A ⊗Ae −

(resp. HomAe (A,−)). �

In particular, we have that

(27)

HH
0 (A,M ) � HomAe (A,M ),

HH0 (A,M ) � M ⊗Ae A.

But these descriptions are not necessarily very illuminating at this point. In section 1.3 we will give

more concrete interpretations.

An important observation using theorem 15 is that the Hochschild cohomology of the A-bimodule M
only depends on the category of A-bimodules. More generally it can be shown to only depend on the

derived category, in this generality it is due to Rickard [52]. We’ll prove the statement for abelian

categories.

Corollary 16. Hochschild (co)homology is Morita invariant.

Proof. Assume thatA andB are Morita equivalent through the bimodules APB and BQA. The equivalences

of categories are given by P ⊗A − and Q ⊗B −, and these functors preserve projective resolutions. We

obtain isomorphisms

(28)

Ext
n
A (P ⊗B −,−) � Ext

n
B (−,Q ⊗A −)

Ext
n
A (−, P ⊗B −) � Ext

n
B (Q ⊗A −,−)

Tor
A
n (P ⊗B −,−) � Tor

B
n (−,Q ⊗A −)

Tor
A
n (−, P ⊗B −) � Tor

B
n (Q ⊗A −,−)

where we are only using the left module structure, and we have similar expressions when using the

right module structure.

Using theorem 15 and these isomorphisms we get for every A-bimodule M that

(29)

HH
n (A,M ) � Ext

n
A⊗Aop (A,M )

� Ext
n
A⊗Aop (P ⊗B Q,M )

� Ext
n
B⊗Aop (Q,Q ⊗A M )

� Ext
n
B⊗Bop (B,Q ⊗A M ⊗A P

� HH
n (B,Q ⊗A M ⊗A P )

and likewise for Hochschild homology. �

In section 8 we will greatly extend this Morita invariance to derived Morita invariance for much more

general objects, but as mentioned earlier, for algebras it was known by Rickard who showed that even

though equivalences of derived categories are not known to be given by tensoring with a complex of

bimodules one can still �nd such a complex of bimodules giving an equivalence. We’ll come back to

this question in the geometric setting when discussing theorem 215.
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1.3 Interpretation in low degrees

We will now give an interpretation for Hochschild (co)homology in low degrees, where we can explicitly

manipulate the bar complex, or rather its reinterpretation as in propositions 9 and 10. For this we

observe that the di�erential of the Hochschild chain complex in low degrees is given by

(30)

M ⊗k A ⊗k A M ⊗k A M

m ⊗ a ⊗ b ma ⊗ b −m ⊗ ab + bm ⊗ a

m ⊗ a ma − am,

d d

whilst for the Hochschild cochain complex C
• (A,M )

(31)

M Homk (A,M ) Homk (A ⊗k A,M )

m d(m) : a 7→ am −ma

f d( f ) : a ⊗ b 7→ af (b) − f (ab) + f (a)b

d d

and

(32)

Homk (A ⊗k A,M ) Homk (A ⊗k A ⊗k A,M )

д d(д) : a ⊗ b ⊗ c 7→ aд(b ⊗ c ) − д(ab ⊗ c ) + д(a ⊗ bc ) − д(a ⊗ b)c .

d

Using these explicit descriptions in low degrees we can obtain the following.

Zeroth Hochschild homology

Proposition 17. We have that

(33) HH0 (A,M ) � M/〈am −ma | a ∈ A,m ∈ M〉

is the module of coinvariants. In particular, we have

(34) HH0 (A) � A/[A,A] = Aab.

Proof. This is immediate from the description of the morphism in (30). �

Remark 18. The vector space [A,A] is usually not an ideal inA, so there is no obvious algebra structure

on HH0 (A).

There is no one-size-�ts-all description for Hochschild homology in higher degrees. But if A is com-

mutative then a description in terms of di�erential forms is possible. We will come back to this in

section 3.
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Zeroth Hochschild cohomology

Proposition 19. We have that

(35) HH
0 (A,M ) � {m ∈ M | ∀a ∈ A : am =ma}

is the submodule of invariants. In particular, we have

(36) HH
0 (A) � Z(A).

Proof. This is immediate from the description of the morphism in (31). �

Remark 20. We can now give a new explanation of the non-functoriality of Hochschild cohomology

using the interpretation of HH
0 (A) as the center: taking the center of an algebra isn’t a functor.

First Hochschild cohomology

De�nition 21. A morphism f : A→ M is a k-derivation if

(37) f (ab) = af (b) + f (a)b .

We will denote the k-module of derivations by Der(A,M ).

If f = adm form ∈ M , where

(38) adm (a) = [a,m] = am −ma

then f is an inner derivation. We will denote the k-module of inner derivations by InnDer(A,M ).

When A = M , we will use the notation OutDer(A) and InnDer(A). When A is commutative we will

discuss derivations in more detail in section 3. For now, observe that in the commutative case there are

no inner derivations.

Proposition 22. We have that

(39) HH
1 (A,M ) � OutDer(A,M ) B Der(A,M )/ InnDer(A,M )

are the outer derivations. In particular we have that

(40) HH
1 (A) � OutDer(A).

Proof. The description of the morphism in (31) tells us that Hochschild 1-cocycles are derivations, whilst

Hochschild 1-coboundaries are inner derivations. �

At this point the �rst Hochschild cohomology HH
1 (A) is just a vector space. But we can equip it with a

Lie bracket. This is just a small piece of the extra structure that we will see in section 2.

Lemma 23. Let D1,D2 : A→ A be derivations. Then [D1,D2] B D1 ◦ D2 − D2 ◦ D1 is also a derivation.

Moreover, if D2 = ada is an inner derivation, for some a ∈ A, then [D1, ada] = adD1 (a) .

Proof. From

(41)

[D1,D2](ab) = D1 (D2 (ab)) − D2 (D1 (ab))

= D1 (aD2 (b) + D2 (a)b) − D2 (aD1 (b) + D1 (a)b))

= aD1 (D2 (b)) + D1 (a)D2 (b) + D2 (a)D1 (b) + D1 (D2 (a))b

− aD2 (D1 (b)) − D2 (a)D1 (b) − D1 (a)D2 (b) − D1 (D2 (a))b

= aD1 (D2 (b)) − aD2 (D1 (b)) + D1 (D2 (a))b − D2 (D1 (a))b

= a[D1,D2](b) + [D1,D2](a)b

11



we get that [D1,D2] is indeed a derivation.

Similarly we compute

(42)

[D1, ada](b) = D1 (ada (b)) − ada (D1 (b))

= D1 (ab − ba) − (aD1 (b) − D1 (b)a)

= aD1 (b) + D1 (a)b − bD1 (a) − D1 (b)a − aD1 (b) + D1 (b)a

= D1 (a)b − bD1 (a)

= adD1 (a) (b).

�

Corollary 24. HH1 (A) has the structure of a Lie algebra.

Proof. By lemma 23 we have that Der(A) is a Lie algebra (bilinearity and alternativity are trivial, the

Jacobi identity is an easy computation), whilst InnDer(A) ⊆ Der(A) is a Lie ideal. So OutDer(A) has

the structure of a Lie algebra, and so does HH
1 (A) via proposition 22. �

Second Hochschild cohomology The following discussion is the �rst aspect of why we care about

Hochschild cohomology in the context of these lecture notes: deformation theory.

De�nition 25. Let A be a k-algebra, and M an A-bimodule. A square-zero extension of A by M is a

surjection f : E � A of k-algebras, such that

1. (ker f )2 = 0 (which implies that it has an A-bimodule structure),

2. ker f � M as A-bimodules
1
.

To see that ker f indeed has an A-bimodule structure, let e be a lift of a ∈ A. We will de�ne a ·m = em
and m · a = me for m ∈ ker f . If e ′ is another lift, then e − e ′ ∈ ker f , so (e − e ′)m ∈ (ker f )2 = 0

means em = em′ andme =me ′.

So we have a sequence

(43) 0→ M → E → A→ 0.

We will impose an equivalence relation on square-zero extensions.

De�nition 26. We say that f : E → A and f ′ : E ′ → A are equivalent if there exists an algebra

morphism φ : E → E ′ (necessarily an isomorphism), such that

(44)

0 M E A 0

0 M E ′ A 0

φ

f

f ′

commutes.

Under our standing assumption on k being a �eld the sequence (43) is split as a sequence of vector

spaces. If we choose a splitting s : A→ E we get an isomorphism E � A ⊕ M of vector spaces. Using

this decomposition the multiplication law on E can be written as

(45) (a,m) · (b,n) = (ab,an +mb + д(a,b))

1
We will introduce an equivalence relation to deal with the choice of isomorphism here.
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for д : A⊗k A→ M . This morphism is called the factor set. The factor set is determined by the splitting s ,
which is not necessarily an algebra morphism, by д(a,b) = s (ab) − s (a)s (b). One can check that the

unit of E corresponds to (1,−д(1, 1)) in this description.

If we consider the multiplication (a, 0) · (b, 0) · (c, 0) inside E, then the associativity of E is equivalent to

(46) aд(b ⊗ c ) + д(a ⊗ bc ) − д(ab)c − д(ab ⊗ c ) = 0,

which corresponds to д being a Hochschild 2-cocycle, by (32).

But there was a choice of splitting s : A → E involved in the de�nition of д. If s ′ : A → E is another

splitting, then we obtain a di�erent factor set д′. Comparing them gives

(47)

д′(a,b) − д(a,b) = (s ′(a)s ′(b) − s ′(ab)) − (s (a)s (b) − s (ab))

= s ′(a) (s ′(b) − s (b)) − (s ′(ab) − s (ab)) + (s ′(a) − s (a)) s (b).

But this is precisely the Hochschild di�erential applied to s − s ′, which is a morphism A → M by

construction, using the M-bimodule structure on M as discussed above. So the choice of a factor set

gives a well-de�ned cohomology class.

If д = 0, then we call E the trivial extension.

Theorem 27. There exists a bijection

(48) HH
2 (A,M ) � AlgExt(A,M )

such that 0 ∈ HH2 (A,M ) corresponds to the equivalence class of the trivial extension.

We will mostly be interested in the case where M = A. In this case we will call E an square-zero
deformation or �rst order deformation. This is a particular case of an in�nitesimal deformation, as

will be discussed in section 5. When M = A, we are describing algebra structures on A ⊕ At such

that t2 = 0, so we can equivalently describe square-zero deformations of A as a k[t]/(t2)-algebra E, such

that E ⊗k[t ]/(t 2) k � A. The notion of equivalence becomes that of a k[t]/(t2)-module automorphism

which reduces to the identity when t is set to 0.

So far we haven’t seen any examples of Hochschild cohomology, let alone an example where HH
2 (A) , 0.

The following example gives an ad hoc description of a (non-trivial) in�nitesimal deformation of the

polynomial ring in 2 variables.

Example 28. LetA = k[x ,y]. Then we can equipk[x ,y]⊕tk[x ,y]with a multiplication for whichy·x = yx+t ,
i.e. using the factor set д(y,x ) = 1. This is an in�nitesimal deformation of k[x ,y] in the direction of the

Weyl plane. We will come back to this.

If HH
2 (A) = 0, then A does not have any square-zero deformations, and vice versa. Such algebras are

called (in�nitesimally, or absolutely) rigid2
.

Third Hochschild cohomology One can show that HH
3 (A,M ) classi�es crossed bimodules, see

[40, exercise E.1.5.1]. We will not discuss this here.

But we should at this point mention that the combination of HH
1 (A), HH2 (A) and HH

3 (A) will play an

important role in the deformation theory of algebras, as discussed in section 5. The third Hochschild

cohomology group will take on the role of obstruction space.

2
Hochschild called such algebras segregated in his original paper.

13



1.4 Examples

Explicit computations with the bar complex are often di�cult, and only work in very elementary cases.

We will collect a few of these examples, but we will also discuss some examples in which there exists a

much smaller resolution that we can use, instead of the bar complex.

From now on we will focus on the case where M = A, occasionally we will mention what happens in

the general case.

Example 29 (The base �eld). This case is completely trivial, but we observe that if A = k , then Ae � k .

So

(49) HH
i (k ) �




k i = 0

0 i ≥ 1

and

(50) HHi (k ) �



k i = 0

0 i ≥ 1.

This triviality will be useful when discussing exceptional collections in ??.

Example 30 (The polynomial ringk[t]). Instead of the bar complex we can use a very concrete resolution

of k[t] as a bimodule over itself. Observe that k[t]e � k[x ,y], and k[t] as a k[x ,y]-module has a free

resolution

(51) 0→ k[x ,y]
·(x−y )
→ k[x ,y]→ k[t]→ 0.

From this we immediately see that

(52) HHi (k[t]) �



k[t] i = 0, 1

0 i ≥ 2.

and

(53) HH
i (k[t]) �




k[t] i = 0, 1

0 i ≥ 2.

This agreement between Hochschild homology and cohomology is no coincidence:k[t] is a so called 1-Calabi–

Yau algebra, so Poincaré–Van den Bergh duality applies, as in ??.

Example 31 (Finite-dimensional algebras). If A is a �nite-dimensional k-algebra, then it is possible to

construct a small projective resolution of A as an A-bimodule. For details one is referred to [19, §1.5]
3

Applying this to A = kQ , where Q is a connected acyclic quiver, the resolution takes on the form

(54) 0→
⊕
α ∈Q1

Aees (α ) ⊗ et (α ) →
⊕
v ∈Q0

Aeev ⊗ ev → A→ 0.

From the length of this resolution it is immediate that path algebras do not have deformations. Imposing

relations on the quiver yields more complicated �nite-dimensional algebras, and the explicit description

of the resolution can be implemented in computer algebra, notably QPA
4
.

3
I should probably give a self-contained discussion.

4https://www.gap-system.org/Packages/qpa.html
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More generally when A has �nite global dimension we have the description

(55) HHi (A) �



kr i = 0

0 i ≥ 1

where r is the number of isomorphism classes of simple modules.

Example 32 (Truncated polynomial algebras k[t]/(tn )). Again we want to use a small resolution

ofA = k[t]/(tn ) as a bimodule over itself. We will use a 2-periodic resolution for this, which immediately

tells us that the Hochschild (co)homology is itself 2-periodic, i.e.

(56)

HH
i (A,M ) � HH

i+2 (A,M )

HHi (A,M ) � HHi+2 (A,M )

for any A-bimodule M , and i ≥ 1. This would of course be impossible to read o� from the de�nition

using bar resolution.

This 2-periodic resolution is de�ned as follows: let u = t ⊗ 1 − 1 ⊗ t and v =
∑n−1

i=0 t
n−1−i ⊗ t i . Then we

will use

(57) . . . Ae Ae Ae Ae A 0.
v · u · v · u · µ

In exercise 33 a method of proving the exactness is suggested.

By applying HomAe (−,M ) or − ⊗Ae M to this sequence we get

(58) 0 M M M M M . . .
0 ntn−1 · 0 ntn−1 · 0

We always have that

(59) HH
0 (A,M ) � HH0 (A,M ) � M,

which we could also deduce from propositions 17 and 19.

For i ≥ 1 the description depends on chark . If gcd(n, chark ) = 1 we obtain for i even

(60) HH
i (A,M ) � HHi (A,M ) � M/tn−1M

and for i odd

(61) HH
i (A,M ) � HHi (A,M ) � tM .

On the other hand, if gcd(n, chark ) , 1, then the morphism which is multiplication by ntn−1 is the zero

morphism, so the sequence splits, and we obtain

(62) HH
i (A,M ) � HHi (A,M ) � M

for all i ≥ 1.
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1.5 Exercises

Exercise 33. Show that (57) is exact by showing that the maps si give a contracting homotopy, where

for i = −1 we take s−1 (1) = 1 ⊗ 1, whilst form ≥ 0 we de�ne

(63)

s2m (1 ⊗ t j ) = −

j∑
l=1

t j−l ⊗ t l−1

s2m+1 (1 ⊗ x
j ) = δn−1j ⊗ 1.

Exercise 34. Let k be of characteristic 0. Let us denote A = A1 (k ) the �rst Weyl algebra, de�ned

as k〈x ,y〉/(yx − xy − 1). It is the ring of di�erential operators on A1

k = Speck[x], where y corresponds

to ∂/∂x .

Let V be a 2-dimensional vector space, and choose a basis {v,w }. Show that

(64) 0 Ae ⊗
∧

2V Ae ⊗ V Ae
0

f д

where

(65) f (1 ⊗ 1 ⊗ v ∧w ) = (1 ⊗ x − x ⊗ 1) ⊗w − (1 ⊗ y − y ⊗ 1) ⊗ v

and

(66)

д(1 ⊗ 1 ⊗ v ) = 1 ⊗ x − x ⊗ 1

д(1 ⊗ 1 ⊗ u) = 1 ⊗ y − y ⊗ 1

gives a free resolution of A. Using this, show that

(67)

HH
i (A) =




k i = 0

0 i , 0

,

HHi (A) =



k i = 2

0 i , 2

.

This apparent duality between Hochschild homology and cohomology is not a coincidence in this case,

see ??.

Exercise 35. We have seen that HH• (−) is a (covariant) functor. Show that

1. it sends products to direct sums, i.e.

(68) HH• (A × B) � HH• (A) ⊕ HH• (B),

2. it preserves sequential limits, i.e. if Ai → Ai+1 for i ∈ N is a sequence of algebra morphisms, then

(69) HH• (lim
−−→

Ai ) � lim

−−→
HH• (Ai ).

Now �xing A, show that HH• (A,−) sends a short exact sequence

(70) 0→ M ′ → M → M ′′ → 0

of A-bimodules to a long exact sequence

(71) . . . → HHn (A,M
′) → HHn (A,M ) → HHn (A,M

′′) → . . . .
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Exercise 36. Prove propositions 11 and 13.

Exercise 37. Let A be an associative k-algebra.

1. Show that

(72) HHi (A,A
e) �




A i = 0

0 i ≥ 1.

2. Explain why the analogous statement is not true for HH
i (A,Ae).
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2 Extra structure on Hochschild (co)homology

Hochschild homology and cohomology have a rich structure: they are more than just k-modules, which

is how we de�ned them in the previous section. We will discuss the following structure in these notes.

1. Hochschild cohomology has both the structure of an associative algebra and a Lie algebra;

2. Hochschild homology is both a module and a representation over Hochschild cohomology;

3. if A is commutative, then Hochschild homology itself has an algebra structure.

We will take A = M throughout here.

Observe that this is not an exhaustive list of the extra structure. We will not discuss the action of HH
• (A)

on Ext
•
A (M,N ) (see [67, §1.6]), the cut coproduct on Hochschild homology, generalisations of the

structures discussed here when the A-bimodule has an algebra structure of its own, similar structures

on the variations on cyclic homology, . . .

2.1 Hochschild cohomology is a Gerstenhaber algebra

The �rst aspect that we deal with is the algebraic structure on Hochschild cohomology (and Hochschild

cochains): it is both

• a graded-commutative algebra,

• a graded Lie (super-)algebra,

and these structures are compatible: we will call such a structure a Gerstenhaber algebra, see de�nition 54.

For Hochschild cochains the situation is somewhat more complicated, as some properties are only true

up to homotopy. For now we will not go into many details regarding this, this might change later on in

the notes.

Observe that we have already seen a small part of the algebra structure in proposition 19, and of the

Lie algebra structure in corollary 24. We will now extend these structures to the entire Hochschild

cohomology of A, and discuss their compatibility.

Originally the Lie bracket on Hochschild cochains was introduced by Gerstenhaber in [14] to prove

that the multiplication on Hochschild cohomology is graded-commutative. But this Lie bracket is also

very important for deformation theory, we will come back to this in section 5.

Associative algebra structure: cup product We will start with introducing the associative multipli-

cation, both on C
• (A), and by compatibility with the di�erential, on HH

• (A). The graded-commutativity

will have to wait for now.

De�nition 38. Let f ∈ Cm (A) and д ∈ Cn (A) be Hochschild cochains. The cup product of f and д is

the element f ∪ д de�ned by

(73) f ∪ д(a1 ⊗ . . . ⊗ am+n ) = f (a1 ⊗ . . . ⊗ am )д(am+1 ⊗ . . . ⊗ am+n ).

Lemma 39. The cup product makes C
• (A) into a di�erential graded algebra, i.e. the cup product is

associative and satis�es the graded Leibniz rule

(74) dm+n+1 ( f ∪ д) = dm+1 ( f ) ∪ д + (−1)m f ∪ dn+1 (д).

where f ∈ Cm (A) and д ∈ Cn (A).
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Proof. Associativity is immediate, as ( f ∪ д) ∪ h and f ∪ (д ∪ h) involve multiplication inside A, which

is associative.

The compatibility with the di�erential is the following computation, which follows immediately from

the de�nitions. For the left-hand side we have

(75)

dm+n+1 ( f ∪ д) (a1 ⊗ . . . am+n+1)

= a1 ( f ∪ д) (a2 ⊗ . . . ⊗ am+n+1)

+

m+n∑
i=1

(−1)i ( f ∪ д) (a1 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ am+n+1)

+ (−1)m+n+1 ( f ∪ д) (a1 ⊗ . . . ⊗ am+n )am+n+1

whilst for the right-hand side we have

(76)

(dm+1 ( f ) ∪ д) (a1 ⊗ . . . ⊗ am+n+1)

= a1 f (a2 ⊗ . . . ⊗ am+1)д(am+2 ⊗ . . . ⊗ am+n+1)

+

m∑
i=1

f (a1 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ am+1)д(am+2 ⊗ . . . ⊗ am+n+1)

+ (−1)m+1 f (a1 ⊗ . . . ⊗ am )am+1д(am+2 ⊗ . . . ⊗ am+n+1)

and

(77)

(−1)m ( f ∪ dn+1 (д)) (a1 ⊗ . . . ⊗ am+n+1)

= (−1)m f (a1 ⊗ . . . ⊗ am )am+1д(am+2 ⊗ . . . ⊗ am+n+1)

+

n∑
i=1

(−1)m+i f (a1 ⊗ . . . ⊗ am )д(am+1 ⊗ . . . ⊗ am+iam+i+1 ⊗ . . . ⊗ am+n+1)

+ (−1)m+n+1 f (a1 ⊗ . . . ⊗ am )д(am+1 ⊗ . . . ⊗ am+n )am+n+1.

It su�ces to identify the last and �rst terms of (76) and (77), and reindex the summation in (77) to run

fromm + 1 to n +m to get the equality. �

By taking cohomology of the Hochschild cochain complex we get the following corollary.

Corollary 40. The Hochschild cohomology HH
• (A) is a graded associative algebra.

This is only the �rst aspect of the algebraic structure of C
• (A). Before we de�ne the Lie bracket, we

should mention that the cup product on the level of cohomology is actually commutative! This is one

of the main results of [14].

Proposition 41. The Hochschild cohomologyHH
• (A) is a graded-commutative algebra, i.e. for f ∈ HHm (A)

and д ∈ HHn (A) we have that

(78) f ∪ д = (−1)mnд ∪ f .

The proof of this result will require the Gerstenhaber bracket which will be de�ned shortly. We will

show that the di�erence between f ∪д and д ∪ f for two Hochschild cochains has a precise description

as the di�erential of the circle product f ◦ д, so that it vanishes in cohomology.

Observe that in proposition 19 we saw that HH
0 (A) � Z(A), so we at least already knew that the degree

zero part was a commutative subalgebra. It turns out that in a precise sense Hochschild cohomology

can be seen as a derived center.
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Remark 42. Using theorem 15 we have another graded-commutative algebra structure on Hochschild

cohomology, given by the Yoneda product on Ext-groups. One can show that the cup product and

Yoneda product are actually identi�ed under the isomorphism (25). We refer to [67] for details.

Lie algebra structure: Gerstenhaber bracket Next up is a Lie bracket on Hochschild cochains,

which like the product is compatible with the Hochschild di�erential, hence descends to a Lie bracket

on Hochschild cohomology.

De�nition 43. Let f ∈ Cm (A) and д ∈ Cn (A) be Hochschild cochains. Let us denote
5

the element f ◦i д
of C

m+n−1 (A), for i = 1, . . . ,m, de�ned by

(79) f ◦i д(a1 ⊗ . . . ⊗ am+n−1) = f (a1 ⊗ . . . ⊗ ai−1 ⊗ д(ai ⊗ . . . ⊗ ai+n−1) ⊗ ai+n ⊗ . . . ⊗ am+n−1) .

The circle product of the Hochschild cochains f and д is the element f ◦ д ∈ Cm+n−1 (A) de�ned by

(80) f ◦ д B
m∑
i=1

(−1) (i−1) (n+1) f ◦i д.

This circle product equips C
• (A) with the structure of a so called pre-Lie algebra. In particular, it is

not associative. We will not be interested in this structure on its own, as we are only interested in the

structure induced by the following de�nition.

De�nition 44. Let f ∈ Cm (A) and д ∈ Cn (A) be Hochschild cochains. Then their Gerstenhaber bracket
is the element [f ,д] ∈ Cm+n−1 (A) de�ned by

(81) [f ,д] B f ◦ д − (−1) (m−1) (n−1)д ◦ f .

The way Gerstenhaber proves essential properties of his bracket depends greatly on a detailed analysis

of − ◦i − and − ◦ −, and for details
6

one is referred to [14]. We will only summarise the intermediate

steps in what follows.

Example 45. The Gerstenhaber product will play an important role when studying the deformation

theory of algebras. Ifm = n = 2, and f ∈ C2 (A), then (at least when the characteristic is not 2)

(82) [f , f ] = 2 ( f ( f (a ⊗ b) ⊗ c ) − f (a ⊗ f (b ⊗ c )) .

Remark 46. Observe that the de�nition of the Gerstenhaber bracket did not use the algebra structure

on A. But one can observe that the multiplication morphism µ : A ⊗k A→ A is the coboundary of the

identity, and

(83) d( f ) = [f ,−µ]

makes the link between the algebra structure on A, the Hochschild di�erential and the Gerstenhaber

bracket.

Even more is true: the cup product can also be expressed in terms of the − ◦i −, as

(84) f ∪ д = (µ ◦0 f ) ◦m−1 д

where f ∈ Cm (A) and д ∈ Cn (A).

5
The ambiguity with composition of functions is intentional: indeed, for m = n = 1 the circle product really is the

composition of Hochschild 1-cochains.

6
Gerstenhaber himself writes on page 86 of [15] that the Poisson identity relating the Gerstenhaber bracket to the cup

product follows from “a (nasty) computation”. I am not going to argue with this judgment.
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The skew symmetry and Jacobi identity are discussed in [14, theorem 1]. These follow rather straight-

forwardly from the pre-Lie structure. Establishing that C
• (A) has a pre-Lie structure is done by using

that of a pre-Lie system, which takes all the − ◦i − into account. It is shown in [14, theorem 2] how such

a pre-Lie system induces a pre-Lie algebra structure.

Proposition 47. Let f ∈ Cm (A,A), д ∈ Cn (A) and h ∈ Cp (A) be Hochschild cochains. Then

skew symmetry [f ,д] = −(−1) (m−1) (n−1)[д, f ]

Jacobi identity (−1) (m−1) (p−1)[f , [д,h]] + (−1) (p−1) (n−1)[h, [f ,д]] + (−1) (n−1) (m−1)[д, [h, f ] = 0

Remark 48. The skew symmetry means that we are considering graded Lie superalgebras, we will not

consider graded Lie algebras that in the strict sense of the word.

Proof. The skew symmetry follows easily by replacing [−,−] with its de�nition as the commutator of

the circle product, and observing that the four terms appear with opposite signs.

For the proof of the Jacobi identity, one is referred to [14], as explained above. �

The next step is the compatibility with the Hochschild di�erential. In other words

Proposition 49. Let f ∈ Cm (A,A), д ∈ Cn (A) and h ∈ Cp (A) be Hochschild cochains. Then

(85) d([f ,д]) = (−1)n−1[d( f ),д] + [f , d(д)].

Proof. This follows from (83) and the Jacobi identity from proposition 47, applying (83) to [f ,д]. �

From this we get the following corollary, which will be important for the deformation theory of algebras,

see section 5. Recall that the axioms for a di�erential graded Lie algebra are precisely given by the

results of proposition 47, except that there is a shift in the degree appearing.

Corollary 50. C•+1 (A,A) is a di�erential graded Lie algebra.

Recall that in corollary 24 we saw that HH
1 (A) has the structure of a Lie algebra. The following result

tells us that it is a Lie subalgebra in degree 0 of a graded Lie algebra. It is clear from the de�nition of the

Gerstenhaber bracket for elements in C
1 (A) and the de�nition of the Lie algebra structure on HH

1 (A)
that they agree.

Proposition 51. HH•+1 (A) is a graded Lie algebra.

Let us consider this graded Lie algebra structure in a special case.

Example 52. The Lie algebraHH
1 (A) consisting of outer derivations acts on the Hochschild cohomology

space HH
0 (A), which we have shown to be the center Z(A) of A. If D is a derivation, and z ∈ Z(A) a

central element, then

(86) [D, z] = D ◦ z − z ◦ D = D ◦ z = D (z)

commutes with every element a ∈ A, as one checks easily.

Commutativity of the cup product We can now prove the commutativity of the cup product on the

level of cohomology. The main ingredient is given in proposition 53, which is a computation depending

on the notion of a pre-Lie algebra that can be found in [14, theorem 3]. We will not reproduce it here
7
.

7
It is an interesting exercise to compute things in low degree, to get a feel for the formulas and the role of the Hochschild

di�erential.
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Proposition 53. Let f ∈ Cm (A) and д ∈ Cn (A) be Hochschild cochains. Then

(87) f ∪ д − (−1)mnд ∪ f = d(д) ◦ f + (−1)m d(д ◦ f ) + (−1)m−1д ◦ d( f )

But this leads us immediately to the proof of the graded-commutativity of HH
• (A).

Proof of proposition 41. In the notation of proposition 53, if f and д are Hochschild cocycles, then (87)

becomes

(88) f ∪ д − (−1)mnд ∪ f = dn+m+1 ( f ◦ д).

So the di�erence between the commutator of two cocycles is a coboundary, and it vanishes when taking

cohomology. �

Gerstenhaber algebra structure The cup product and Gerstenhaber bracket on Hochschild coho-

mology de�ne the structure of a super-commutative algebra and a graded Lie superalgebra. They are

moreover compatible in the following sense. We assign a name to this structure, because as it turns

out, this is not the only natural example of such a structure. We will discuss polyvector �elds, and their

connection to Hochschild cohomology, in section 3.

De�nition 54. A graded vector space A• is a Gerstenhaber algebra if

1. A• has an (associative) super-commutative multiplication of degree 0;

2. A• has a super-Lie bracket of degree −1;

3. these two structures are related via the Poisson identity

(89) [a,bc] = [a,b]c + (−1) ( |a |−1) |b |b[a, c].

Written out in full detail, we have that

(90)

|ab | = |a | + |b |

ab = (−1) |a | |b |ba

for the multiplication, and

(91)

|[a,b]| = |a | + |b | − 1

[a,b] = −(−1) ( |a |−1) ( |b |−1)[b,a]

for the Lie bracket.

The Poisson identity then tells us that a 7→ [a,−] : Ap → Ap−1
is a derivation of degree p − 1.

Proposition 55. Let A be an associative k-algebra. Then HH
• (A) is a Gerstenhaber algebra.

Proof. In proposition 41 and proposition 51 we have discussed the algebra and Lie algebra structure. The

missing ingredient is the compatibility between these to structures through the Poisson identity. The

proof of this goes along the same lines as the commutativity of the Gerstenhaber product: one shows

that on the level of Hochschild cochains the obstruction to the Poisson identity is a certain coboundary

given in [14, theorem 5]. This is a quite technical computation, and we will not reproduce it here. �
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Remark 56. The cup product and Gerstenhaber bracket on the level of Hochschild cochain complexes

do not satisfy the Poisson identity, nor is the dg algebra structure graded-commutative, so they do

not give an immediate dg translation of a Gerstenhaber algebra structure. But there are homotopical

versions of this structure, such as that of a B∞-and G∞-algebra, which �xes this incompatibility by

introducing higher homotopies. We come back to this in section 7.3.

At this point we should mention that these (and other) homotopical structures form part of the program

on the Deligne conjecture
8
). We will not go further into this for the time being, but this operadic picture

is an important modern incarnation of the extra structure that we have discussed up to now.

In proposition 83 we will see another example of a Gerstenhaber algebra. These two examples are very

closely related, and their story forms one of the main topics of these notes.

2.2 Higher structures on Hochschild cochains

Ideally we rewrite the discussion on the Gerstenhaber algebra structure on Hochschild cohomology in

such a way that we discuss the higher structures for algebras in this chapter. For now, one is referred to

section 7.3.

2.3 Hochschild homology is a Gerstenhaber module for Hochschild cohomology

For arbitrary algebrasA there is no internal structure
9

onHH• (A) orHH• (A,M ). But there are interesting

actions of HH
• (A) on HH• (A), such that HH• (A) is

• a module under the graded-commutative multiplication,

• a representation for the Gerstenhaber bracket

which are compatible in a certain way. The combination of these structures will be called a Gerstenhaber

module, and they constitute an important part of the so-called Gerstenhaber (pre)calculus on the

pair (C• (A),C• (A)). As we will not discuss this again until the very end
10

we will content ourselves

with giving the de�nitions.

Observe that there are no good written proofs of the compatibility of these operations with the

Hochschild di�erentials. Feel free to take this up as a challenge.

The cap product First up, the action by multiplication, i.e. the module structure.

De�nition 57. Let M be an A-bimodule. Let f ∈ Cn (A) andm ⊗ a1 ⊗ . . . ⊗ ap ∈ Cp (A,M ). Then their

cap product is

(92) f ∩ (m ⊗ a1 ⊗ . . . ⊗ ap ) =



(−1)nmf (a1 ⊗ . . . ⊗ an ) ⊗ an+1 ⊗ . . . ap p ≥ n

0 p < n

which is an element of Cp−n (A,M ).

One can then prove the following result.

8
Stated in 1993 in a letter to Gerstenhaber–May–Stashe�, now a theorem with proofs due to Tamarkin, McClure–Smith,

Kontsevich–Soibelman, . . .

9
If A is commutative we discuss the shu�e product in section 2.4.

10
At least for now. The interested reader is invited to prove the following properties him- or herself.
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Proposition 58. Ci (A,M ) is a di�erential graded module over C
• (A).

From this we get the following.

Corollary 59. HH• (A,M ) is a graded module for the graded-commutative algebra HH
• (A).

Remark 60. In particular we have that HHi (A,M ) is a module over HH
0 (A) � Z(A).

The Lie derivative The next step is the action by the Lie bracket.

De�nition 61. Let f ∈ Cn+1 (A) anda0⊗a1⊗. . .⊗ap ∈ Cp (A,M ). Then the Lie derivative ofa0⊗a1⊗. . .⊗ap
with respect to f is

(93)

Lf (a0 ⊗ a1 ⊗ . . . ⊗ ap ) =

p−n∑
i=0

(−1)nia0 ⊗ . . . ⊗ ai−1 ⊗ f (ai ⊗ . . . ⊗ ai+n ) ⊗ ai+n+1 . . . ⊗ ap

+

p−1∑
j=p−n

(−1)p (j+1) f (aj+1 ⊗ . . . ⊗ ap ⊗ a0 ⊗ . . . ⊗ an−p+j ) ⊗ ap−n+j+1 ⊗ . . . ⊗ aj

One can then prove the following result.

Proposition 62. C• (A) is a di�erential graded Lie representation over C
•+1 (A).

From this we get the following.

Corollary 63. HH• (A) is a representation of the graded Lie algebra HH
•+1 (A).

We can combine these into the notion of a Gerstenhaber module, and discuss the notion of a Gerstenhaber

(pre)calculus. We will not do this for now.

2.4 The shu�le product on Hochschild homology

In general HH• (A) is only a graded HH
• (A)-module. But if A is commutative we can equip it with its

own product. The algebra structure on HH• (A) for A commutative is actually induced using a pairing

(94) C• (A,M ) ⊗k C• (B,N ) → C• (A ⊗k B,M ⊗k N )

which is de�ned for arbitrary algebras A and B, and bimodules M and N (unlike in the rest of this

section we will use M and N to make the formulas a bit more transparent, but we will have M = A
and N = B in applications). This will be the shu�e product from the title of this section.

De�nition 64. A (p,q)-shu�e is an element σ of Symp+q such that σ (i ) < σ (j ) whenever

1. 1 ≤ i < j ≤ p,

2. or p + 1 ≤ i < j ≤ p + q.

The subset of (p,q)-shu�es inside the symmetric group is denoted Shp,q .

We can de�ne an action of Symn on Cn (A,M ), by setting

(95) σ · (m ⊗ a1 ⊗ . . . ⊗ an ) B m ⊗ aσ −1 (1) ⊗ . . . ⊗ aσ −1 (n)

for σ ∈ Symn andm ⊗ a1 ⊗ . . . an ∈ Cn (A,M ).
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De�nition 65. The (p,q)-shu�e product for A and B is the morphism

(96) shp,q (−,−) = − × − : Cp (A,M ) ⊗k Cq (B,N ) → Cp+q (A ⊗k B,M ⊗k N )

which sends (m ⊗ a1 ⊗ . . . ap ) ⊗ (n ⊗ b1 ⊗ . . . ⊗ bq ) to

(97)

∑
σ ∈Shp,q

sgn(σ )σ ·
(
(m ⊗ n) ⊗ (a1 ⊗ 1) ⊗ . . . ⊗ (ap ⊗ 1) ⊗ (1 ⊗ b1) ⊗ . . . ⊗ (1 ⊗ bq )

)

The next lemma shows that the Hochschild homology di�erential is a graded derivation for the shu�e

product. For a proof, see [40, proposition 4.2.2].

Lemma 66. Letm ⊗ a1 ⊗ . . . ⊗ ap ∈ Cp (A,M ) and n ⊗ b1 ⊗ . . . ⊗ bq ∈ Cq (B,N ) be Hochschild chains.

Then

(98)

d

(
(m ⊗ a1 ⊗ . . . ⊗ ap ) × (n ⊗ b1 ⊗ . . . ⊗ bq )

)
= d(m ⊗ a1 ⊗ . . . ⊗ ap ) × (n ⊗ b1 ⊗ . . . ⊗ bq ) + (−1)p (m ⊗ a1 ⊗ . . . ⊗ ap ) × d(n ⊗ b1 ⊗ . . . ⊗ bq ).

Proof. Let us write the ith summand of the di�erential as in (20) by di , indexed by i = 0, . . . ,n. Let us

moreover write

(99) (m ⊗ a1 ⊗ . . . ⊗ ap ) × (n ⊗ b1 ⊗ . . . ⊗ bq ) =
∑

σ ∈Shp,q

sgn(σ ) (m ⊗ n) ⊗ c1 ⊗ . . . ⊗ cp+q

where ci is in the set {a1 ⊗ 1, . . . ,ap ⊗ 1, 1 ⊗ b1, . . . , 1 ⊗ bq }. Now consider

(100) di ((m ⊗ n) ⊗ c1 ⊗ . . . ⊗ cp+q ,

for i = 0, . . . ,n. We now explain what happens with (100) on a case-by-case analysis.

• If i = 0, then c1 = a1 ⊗ 1 (resp. c1 = 1 ⊗ b1), and (100) appears in the �rst summand (resp. second

summand) of the right-hand side of (98).

• The case i = n is similar.

• If i = 1, . . . ,n − 1 then we distinguish two cases:

1. If ci and ci+1 are elements of the form a ⊗ 1 (resp. 1 ⊗ b) then they appear in the �rst

(resp. second summand) of the right-hand side of (98).

2. Otherwise we can permute them, as they will still arise from the application of a di�er-

ent (p,q)-shu�e, in which case we can cancel them, as they appear with opposite signs in

the shu�e product.

�

Using the shu�e product we can construct the Künneth formula for Hochschild homology: we will

combine the (p,q)-shu�es in the following way

(101) shn B
∑

p+q=n

shp,q : (C• (A) ⊗k C• (B))n =
⊕
p+q=n

Cp (A) ⊗k Cq (B) → Cn (A ⊗k B).

Proposition 67. The morphism sh• is a morphism of chain complexes.
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Proof. By lemma 66 we can express d ◦ shp,q (−,−) in terms of shp−1,q (d(−),−) and shp,q−1 (−, d(−)),
which with the appropriate signs gives the di�erential in the tensor product of chain complexes. �

But sh• is not just an morphism of chain complexes: it is actually a quasi-isomorphism. The proof of

this result can be found [65, §9.4].

Theorem 68 (Künneth formula). The shu�e product sh• induces an isomorphism

(102) HH• (A) ⊗k HH• (B) � HH• (A ⊗k B).

Remark 69. Observe that a similar statement is not true for Hochschild cohomology, at least not

without conditions on A and B. In exercise 73 a suggestion for a counterexample is given. In [65, §9.4]

the condition that at least one of them is �nite-dimensional is used. It is not clear to me whether this

can be generalised.

If we now impose commutativity, then the multiplication gives us a morphism of algebras

(103) µ : A ⊗k A→ A.

Using functoriality of the Hochschild chain complex, we obtain a morphism

(104) C• (A ⊗k A) → C• (A).

One can then prove that this equips the Hochschild chain complex with the structure of a commutaitve

di�erential graded algebra [65, proposition 9.4.2], and therefore we have the following.

Proposition 70. HH• (A) is a graded-commutative algebra.

2.5 Exercises

Exercise 71. Let g be a Lie algebra. Equip

∧• g with the exterior product as multiplication, and the

unique extension of the Lie bracket on

∧
1 g to all of

∧• g. Show that this is a Gerstenhaber algebra.

Exercise 72. Use the de�nition of the circle product to check remark 46.

Exercise 73. Let K ,L be �elds of in�nite transcendence degree over k . Then

(105) HH
• (K ⊗k L) � HH

• (K ) ⊗k HH
• (L).

Exercise 74. Explain how (84) gives an alternative proof that d
2 = 0, using only the graded Lie algebra

structure of C
• (A).
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3 The Hochschild–Kostant–Rosenberg isomorphism

The goal of this section is to discuss the Hochschild–Kostant–Rosenberg isomorphism, which identi�es

the Hochschild (co)homology of a regular commutative k-algebra A with its polyvector �elds and

di�erential forms. It is given as [23, theorem 5.2], where the interpretation from theorem 15 is used to

make the link with Hochschild (co)homology.

To understand where the isomorphism comes from, recall that we have identi�cations

(106)




HH
0 (A) � A proposition 19

HH
1 (A) � Der(A) proposition 22

and

(107)




HH0 (A) � A proposition 17

HH1 (A) � Ω1

A proposition 79

where the identi�cation for HH1 (A) stricto sensu is not yet known
11

.

Then the Hochschild–Kostant–Rosenberg isomorphism (see theorem 98) tells us that we can get all
of the Hochschild (co)homology by taking exterior powers of what we have in degree 1, and that this

is an isomorphism of graded commutative algebras: by propositions 41 and 70 we have that HH
• (A)

and HH• (A) are graded commutative, and the exterior product is graded commutative by construction.

3.1 Polyvector �elds and di�erential forms

Let us introduce the module Ω1

A which already made an appearance in (107) without being de�ned.

De�nition 75. The module of Kähler di�erentials Ω1

A is the A-module which is generated by the

symbols da for a ∈ A, subject to the relations
12

(108) d(λa + µb) = λda + µdb

for all λ, µ ∈ k and a,b ∈ A, and

(109) dab = adb + bda

for all a,b ∈ A.

The module of Kähler di�erentials appears in many ways in this context. First of all, it satis�es a

well-known universal property: it co-represents the functor of derivations, via the universal derivation

(110) d: A→ Ω1

A : a 7→ da.

Proposition 76. We have an isomorphism

(111) HomA (ΩA,M ) � Der(A,M )

sending α : ΩA → M to d ◦α : A→ M , giving an isomorphism of functors HomA (ΩA,−) � Der(A,−).

11
The dilemma is whether to give a preliminary discussion of Ω1

A in section 1.3, or postpone it until we have time to discuss

it in detail. We have opted for the latter.

12
To be precise, and consistent with the notation in the literature, we should denote this by Ω1

A/k , making the dependence

on the base �eld explicit. But then we should also do this for Der(A), and likewise for HH
•

and HH•, which we won’t.

27



Recall from proposition 22 thatDer(A,M ) � HH
1 (A,M ). So we have thatHH

1 (A) � Der(A) � HomA (ΩA,A).
This is the �rst ingredient in the proof of the Hochschild–Kostant–Rosenberg isomorphism for Hochschild

cohomology. In geometric notation, when X = SpecA, we have HH
1 (A) � TX .

There is a second description of the Kähler di�erentials which is useful to us. For a proof of this standard

fact one is referred to [60, tag 00RW].

Proposition 77. Let I B ker(µ : A ⊗k A→ A). Then the morphism

(112) Ω1

A → I/I 2 : adb 7→ a ⊗ b − ab ⊗ 1

is an isomorphism of A-modules.

Remark 78. If A is noncommutative, then one denotes Ω1

nc
(A) B I the bimodule of noncommutative

di�erential forms on A. In that case (111) takes on the form

(113) Der(A,M ) � HomAe (Ω1

nc
(A),M ).

For more information, one is referred to [18, §10] or [67, §3.2].

Finally we can relate Ω1

A to Hochschild homology, just like we have already done for Hochschild

cohomology, which is the �rst step in understanding the Hochschild–Kostant–Rosenberg isomorphism

for Hochschild homology.

Proposition 79. Let M be a symmetric A-bimodule. Then

(114) HH1 (A,M ) � M ⊗A Ω1

A.

In particular we have

(115) HH1 (A) � Ω1

A.

Proof. By assumption the morphism M ⊗k A → M is the zero morphism, as this is the Hochschild

di�erential as in (30) and M is symmetric, so HH1 (A,M ) is the quotient of M ⊗k A by the subspace

generated by ma ⊗ b −m ⊗ ab + bm ⊗ a. So the morphism HH1 (A,M ) → M ⊗A Ω1

A sending m ⊗ a
tom ⊗ da is well-de�ned by (109).

In the other direction we consider the morphism M ⊗A Ω1

A → C1 (A,M ) sending m ⊗ adb to ma ⊗ b.

This morphism lands in Z1 (A,M ) by assumption, and one checks that the maps on cohomology are

inverse. �

Remark 80. It is important that M is symmetric: exercise 37 gives an example where this fails.

3.2 Gerstenhaber algebra structure on polyvector �elds

Using Der(A) we can construct a new Gerstenhaber algebra, which will be closely related to the

Gerstenhaber algebra structure on Hochschild cohomology. We will do this by considering

∧•
Der(A),

the polyvector �elds (or multiderivations) on A. On

∧•
Der(A) we can consider the exterior product of

polyvector �elds, which equips it with the structure of a graded commutative algebra.

The space of derivations is the algebraic version of the vector �elds on a manifold. As such, it is equipped

with a Lie bracket. We can extend this Lie bracket to all of

∧•
Der(A) in the following way.
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De�nition 81. Let α1 ∧ . . . ∧ αm ∈
∧m

Der(A) and β1 ∧ . . . ∧ βn ∈
∧m

Der(A) be polyvector �elds.

Their Schouten–Nijenhuis bracket13
is given by

(116)

[α1∧. . .∧αm , β1∧. . .∧βn] B
m∑
i=1

n∑
j=1

(−1)i+j+m−1[αi , βj ]∧α1∧. . .∧α̂i∧. . .∧αm∧β1∧. . .∧β̂j∧. . .∧βn .

This bracket is the unique extension to a graded Lie algebra structure when one imposes that [D, z] = D (z)
forD ∈ HH1 (A) and z ∈ HH0 (A) � A as in example 52 and [D1,D2] = D1◦D2−D2◦D1 forD1,D2 ∈ HH

1 (A)
as in corollary 24. The following lemma is proved by staring at the signs.

Lemma 82. The Schouten–Nijenhuis bracket equips Der(A) with the structure of a graded Lie algebra.

Because the Schouten–Nijenhuis bracket was de�ned in terms of the generators of the algebra, we

obtain the following.

Proposition 83. The exterior product and Schouten–Nijenhuis bracket equip

∧•
Der(A) with the

structure of a Gerstenhaber algebra.

Remark 84. We have not yet precisely de�ned what the dg version of a Gerstenhaber algebra is

(as it requires to understand operations up to homotopy), so it’s not clear what exactly the extra

structure induced by the cup product and Gerstenhaber bracket on C
• (A) is. But observe that we can

equip

∧•
Der(A) with the zero di�erential, in which case it will be a (strict) dg Gerstenhaber algebra.

Then the Hochschild–Kostant–Rosenberg isomorphism for Hochschild cohomology can be upgraded to

Kontsevich formality: a quasi-isomorphism of “dg Gerstenhaber algebras” between

∧•
Der(A) andC

• (A),
i.e. Hochschild cochains are quasi-isomorphic to their cohomology, and we know exactly what this

cohomology is. We might discuss formality results later on in these notes.

3.3 Gerstenhaber module structure on di�erential forms

This section will be expanded at some point.

3.4 The Hochschild–Kostant–Rosenberg isomorphism: Hochschild homology

We now come to the �rst proof of the Hochschild–Kostant–Rosenberg isomorphism, for smooth

commutative algebras. We will do this in a rather classical fashion for now, based on [40, §1.3, §3.4].

The proof for smooth projective varieties in section 11 will use more advanced machinery. It should

be remarked that it is actually possible to globalise the current proof without using the machinery of

derived categories and Atiyah classes in an essential way, and maybe this will be discussed too at some

point.

The statement of the Hochschild–Kostant–Rosenberg isomorphism in this setting is the following.

Theorem 85. LetA be a smooth k-algebra andM a symmetricA-bimodule. Then the antisymmetrisation

morphism (118) induces an isomorphism

(117) Ωn
A/k ⊗A M → HHn (A,M ).

When A = M this isomorphism is an isomorphism of graded k-algebras.

13
Sometimes just Schouten bracket. I like to speculate that this is purely for pronunciation reasons.
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The proof given in this section naturally splits in two pieces:

1. constructing the antisymmetrisation morphism ϵn : M ⊗A Ωn
A → HHn (A,M ) of A-modules (no

smoothness is required here);

2. showing that it is an isomorphism by checking it at every maximal ideal, using the description of

Hochschild homology as Tor and an explicit free resolution (the Koszul resolution) in the local

setting (smoothness is required here).

The construction of the morphism is done in proposition 89, and checking that it locally is an isomor-

phism is done after we prove proposition 95.

Note that, if we would only be interested in HHn (A) and not HHn (A,M ), the construction of the

morphism in step 1 can be done via a universal property, based on the graded-commutative algebra

structure from proposition 70. We will take this approach in the case of Hochschild cohomology in

section 3.5. Observe that this was the generality of the original paper of Hochschild–Kostant–Rosenberg,

i.e. they only considered HH• (A) and HH
• (A).

The antisymmetrisation morphism In proposition 79 we saw that the �rst Hochschild homology

is isomorphic to the Kähler di�erentials, with the morphism Ω1

A ⊗A M → HH1 (A,M ) being of the

formm ⊗ adb 7→ma ⊗ b. We can extend these morphisms to di�erential n-forms and HHn (A,M ) in the

following way. First we introduce the antisymmetrisation map

(118) ϵn : M ⊗k
∧n

A→ Cn (A,M ) :m ⊗ a1 ∧ . . . ∧ an 7→
∑

σ ∈Symn

sgn(σ )σ ·m ⊗ a1 ⊗ . . . ⊗ an

where the action of σ is de�ned analogously to (95). Remark that from this point on we will have to be

careful about whether ⊗ or

∧
is taken over k or A.

We want to turn this into a morphism M ⊗A Ωn
A → HHn (A,M ), so we need to show that

1. ϵn is compatible with the Hochschild di�erential;

2. it factors through M ⊗A Ωn
A.

To do the �rst, we will use a technical trick, inspired by Chevalley–Eilenberg (co)homology for Lie

algebras. If g is a Lie algebra, and M a Lie module over it, then the Chevalley–Eilenberg di�erential is

(119)

dCE : M ⊗k
∧n
g → M ⊗k

∧n−1
g

m ⊗ д1 ∧ . . . ∧ дn 7→
n∑
i=1

(−1)i−1[m,дi ] ⊗ д1 ∧ . . . ∧ д̂i ∧ . . .дn

+
∑

1≤i<j≤n

(−1)i+j−1m ⊗ [дi ,дj ] ∧ . . . ∧ д̂i ∧ . . . ∧ д̂j ∧ . . . ∧ дn .

The role of this di�erential in Chevalley–Eilenberg cohomology, which is the cohomology theory for

Lie algebras parallel to Hochschild cohomology for associative algebras, will eventually be explained in

appendix 3.

We will apply it to g = A, where A is considered as a Lie algebra via the commutator bracket. In

particular, when A is commutative this is an abelian Lie algebra. But the following proposition holds

without commutativity assumption.

30



Proposition 86. The diagram

(120)

M ⊗k
∧n A Cn (A,M )

M ⊗k
∧n−1A Cn−1 (A,M )

ϵn

dCE d

ϵn−1

commutes for all n ≥ 0.

The proof goes via induction. We will need the following technical (but easy) lemma, where

(121)

adn (a) : Cn (A,M ) → Cn (A,M )

m ⊗ a1 ⊗ . . . ⊗ an 7→
n∑
i=0

m ⊗ a1 ⊗ . . . ⊗ [a,ai ] ⊗ . . . ⊗ an

is an extension of the notion of inner derivation to Cn (A,M ), and

(122)

hn (a) : Cn (A,M ) → Cn+1 (A,M )

m ⊗ a1 ⊗ . . . ⊗ an 7→
n∑
i=0

(−1)im ⊗ a1 ⊗ . . . ⊗ ai ⊗ a ⊗ ai+1 ⊗ . . . ⊗ an

will provide a null-homotopy for our newly de�ned adn (a), and an inductive way to describe ϵn as in

(125).

Lemma 87. We have that

(123) − adn (a) = d ◦hn (a) + hn−1 (a) ◦ d .

In particular adn (a) : HHn (A,M ) → HHn (A,M ) is zero, as for n = 0 in proposition 22.

Proof. The term d ◦hn (a) gives [a,ai ] by considering the Hochschild di�erential for the summands

containing a ∧ ai and ai ∧ a. The term hn−1 (a) ◦ d cancels all the other summands. �

We can now give the proof of proposition 86.

Proof of proposition 86. The statement for n = 0 is vacuous as the lower line is zero. For n = 1 we have

that ϵ0 = idM and ϵ1 = idM ⊗kA. As

(124) dCE (m ⊗ a) = [m,a] =ma − am = d(m ⊗ a)

the diagram commutes.

Let us assume that d ◦ ϵn = ϵn−1 ◦ dCE. By construction we have that

(125) ϵn+1 (m ⊗ a1 ∧ . . . ∧ an ∧ an+1) = (−1)nhn (an+1)ϵn (m ⊗ a1 ∧ . . . ∧ an ),
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so

(126)

d ◦ ϵn+1 (m ⊗ a1 ∧ . . . ∧ an+1)

= (−1)n d ◦hn (an+1) ◦ ϵn (m ⊗ a1 ∧ . . . ∧ an ) (125)

= (−1)n (− adn (an+1) − hn (an+1) ◦ d) ◦ ϵn (m ⊗ a1 ∧ . . . ∧ an ) lemma 87

= (−1)n+1 adn (an+1) ◦ ϵn (m ⊗ a1 ∧ . . . ∧ an )

+ (−1)n−1hn−1 (an+1) ◦ ϵn−1 ◦ dCE (m ⊗ a1 ∧ . . . ∧ an )

= (−1)n+1 adn (an+1) ◦ ϵn (m ⊗ a1 ∧ . . . ∧ an )

+ ϵn (dCE (m ⊗ a1 ∧ . . . ∧ an ) ∧ an+1) (125)

= ϵn ◦ dCE (m ⊗ a1 ∧ . . . ∧ an ) ∧ an+1).

�

Corollary 88. If A is commutative and M symmetric, then im(ϵn ) ⊆ Zn (A). In particular, there exists a

morphism

(127) ϵn : M ⊗k
∧n

A→ HHn (A,M ).

Proof. The Chevalley–Eilenberg di�erential is identically zero in this case. �

Now we can check that the antisymmetrisation indeed de�nes a morphism of the desired form.

Proposition 89. Let A be commutative, and M a symmetric A-bimodule. Then the morphism (127)

factors as

(128)

M ⊗k
∧n A HHn (A,M )

M ⊗A Ωn
A

ϵn

ϵn

where we will recycle the symbol ϵn for the morphism that we are interested in.

Proof. Recall that Ω1

A is generated by the symbols da, and hence Ωn
A by the symbols da1 ∧ . . . ∧ dan .

We need to check that ϵn is compatible with the relations imposed on Ω1

A and that we can go from

a tensor product over k to a tensor product over A. By the de�nition of ϵn we can assume that the

product ab is the �rst position. We need to show that

(129) ϵn (m ⊗ ab ∧ a2 ∧ . . . ∧ an ) − ϵn (ma ⊗ b ∧ a2 ∧ . . . ∧ an ) − ϵn (mb ⊗ a ∧ a2 ∧ . . . ∧ an )

is actually zero in homology, as this expresses the relation dab = adb + bda, together with the change

from − ⊗k − to − ⊗A −.

If n = 0 then there is nothing to check. If n = 1 we have that (129) is d(m ⊗ a ⊗ b). More generally one

can check that

(130) (129) = − d *
,

∑
σ ∈S

sgn(σ )σ · (m ⊗ a ⊗ b ⊗ a2 ⊗ . . . ⊗ an+
-

where S = {σ ∈ Symn+1 | σ (1) < σ (2)}. �

So for now we have only used commutativity of A. We will continue the proof of the Hochschild–

Kostant–Rosenberg isomorphism after a short digression.
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The projection morphism Before we continue with the Hochschild–Kostant–Rosenberg decompo-

sition for smooth algebras we can prove something for arbitrary commutative algebras over �elds of

characteristic 0, by constructing a morphism in the opposite direction.

(131) πn : Cn (A,M ) → M ⊗A Ωn
A :m ⊗ a1 ⊗ . . . ⊗ an 7→m ⊗ da1 ∧ . . . ∧ dan .

This morphism is again compatible with the Hochschild di�erential.

Lemma 90. We have that πn ◦ d = 0 for all n ≥ 0.

Proof. Using the relation dab = adb + bda after applying πn−1 to the expression (20) allows one to pair

o� terms with opposite signs. �

Corollary 91. There exists a morphism

(132) πn : HHn (A,M ) → M ⊗A Ωn
A.

Proposition 92. The composition πn ◦ ϵn is multiplication by n!.

Proof. We have the equality

(133) m ⊗ daσ −1 (1) ∧ . . . ∧ daσ −1 (n) = sgn(σ )m ⊗ da1 ∧ . . . ∧ dan

so this term appears n! times. �

In characteristic zero we therefore obtain the following corollary.

Corollary 93. If chark = 0, then M ⊗A Ωn
A is a direct summand of HHn (A,M ).

This leads to the λ-decomposition or Hodge decomposition of Hochschild homology, but we will not

develop this further for now. The interested reader is referred to [40, §4.5]. Just be warned that what is

called the Hochschild–Kostant–Rosenberg decomposition in section 11 is sometimes referred to as the

Hodge decomposition, especially in earlier papers. We should stress that

1. in the a�ne setting the Hodge decomposition is only interesting in the presence of singularities,

and in the smooth case it reduces to the Hochschild–Kostant–Rosenberg isomorphism;

2. in the smooth and projective setting the Hochschild–Kostant–Rosenberg decomposition was

originally proved only for Hochschild cohomology, whence the name Hodge decomposition was

used, but as the Hochschild–Kostant–Rosenberg decomposition for Hochschild homology is a

transpose (see section 11) of the Hodge decomposition arising in Hodge theory, this leads to an

unfortunate clash of terminology, which is avoided in these notes.

Computing Tor via the Koszul resolution We have seen in theorem 15 that Hochschild homology

can be described using Tor, as the bar complex provided a free resolution of A as a bimodule. We will

need another explicit free resolution in the computation of Tor for the proof of the Hochschild–Kostant–

Rosenberg isomorphism, when A is a smooth local k-algebra. This will be provided by the Koszul

complex, which is a standard object in algebra and algebraic geometry. For more information one is

referred to [12, §17], we will only recall some notation and facts.

De�nition 94. Let A be a commutative ring. Let f : M = A⊕n → A be a morphism of A-modules. Then

the Koszul complex associated to f is

(134) 0→
∧n

M → . . . →
∧

1

M → A→ 0
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where

(135) d:

∧j
M →

∧j−1
M :m1 ∧ . . . ∧mj 7→

j∑
i=1

(−1)i+1 f (mi )m1 ∧ . . . ∧ m̂i−1 ∧ . . . ∧mj .

One can check that this is indeed a complex, but more importantly, when the morphism f corresponds

to a regular sequence for an ideal I , then it is actually a free resolution of A/I .

Recall that f = (a1, . . . ,an ) is a regular sequence if ai+1 is not a zero-divisor in A/(a1, . . . ,ai ). In

de�nition 96 we relate this to smoothness of a k-algebra.

We prove the following general result, which will be applied to the local rings we encounter after

applying the local-to-global principle.

Proposition 95. Let B be a commutative local ring, and I an ideal of B generated by a regular se-

quence g = (д1, . . . ,дn ). Then the isomorphism

(136) ϵ1 : I/I
2
�
→ Tor

B
1
(B/I ,B/I )

induces an isomorphism

(137) ϵ• :
∧•

B/I
I/I 2

�
→ Tor

B
• (B/I ,B/I )

of graded-commutative algebras.

Proof. The Koszul complex provides a free resolution

(138) 0→
∧n

B
B⊕n → . . . →

∧
2

B
B⊕n → B⊕n → B → B/I → 0

of B/I as a B-module which we can use to compute Tor:

(139)

Tor
B
• (B/I ,B/I ) � H•

(
(
∧•

B
B⊕n ) ⊗B B/I , dg ⊗B idB/I

)
� H•

(
(
∧•

B
B⊕n ) ⊗B B/I , 0

)
�

∧•

B
(B/I )⊕n

�
∧•

B
I/I 2

The second isomorphism follows from the observation that dg has coe�cients landing in I ⊆ B,

as dg :
∧k+1 B⊕n →

∧k B⊕n has the form

(140) dg (v0 ∧ . . . ∧vk ) =
k∑
i=0

(−1)ig(vi )v0 ∧ . . . ∧ v̂i ∧ . . . ∧vk .

As I is generated by a regular sequence, we have that I/I 2 is a free B/I -module of rank n, generated by

the classes of the elements in the sequence.

Finally, to check that (137) is an isomorphism of graded algebras, observe that the algebra structure on

the right is described by an external product (much like the shu�e product), which can be computed

via the exterior product of Koszul complexes. �

As throughout the entirety of these notes we will let k be a �eld. We have the following equivalent

de�nitions for smoothness.
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De�nition 96. Let A be a �at k-algebra, locally of �nite type. We say that A is smooth (over k) if one of

the following equivalent conditions holds:

1. for all m a maximal ideal of A the kernel of µm : (A ⊗k A)µ−1 (m) → Am is generated by a regular

sequence;

2. the kernel of µ : A ⊗k A→ A is a locally complete intersection;

3. for all p a prime ideal of A we have that dimk (p) Ω
1

A/k ⊗A k (p) = dimp SpecA.

Let us remark that in characteristic 0 smoothness at a point p ∈ SpecA is equivalent to Ω1

A/k,p being

free of �nite rank, and the ring Ap being regular
14

(which is an absolute notion).

Having introduced smoothness, we can put it to good use in proving the main theorem of this section.

Proof of theorem 85. We have constructed a morphism

(141) ϵn : Ω
n
A ⊗A M → HHn (A,M )

of A-modules. We can check whether it is an isomorphism by checking it after localising at every

maximal ideal m of A, i.e. ϵn ⊗A Am needs to be an isomorphism for every m. For the left-hand side we

have the following compatibility with localisation

(142) (Ωn
A ⊗A M ) ⊗A Am � Ωn

Am/k
⊗Am Mm .

For the right-hand side we need an isomorphism

(143) HHn (A,M ) ⊗A Am � HHn (Am,Mm ),

so in the construction of ϵ•we can assume that (A,m) is a local ring. To do this, let us denote I B ker(µ : A⊗kA→ A).
As SpecA → SpecA ⊗k A is a closed morphism we have that n B µ−1 (m) is a maximal ideal

of A ⊗k A � Ae
. There exists an isomorphism

(144) Tor
Ae

n (A,M ) ⊗A Am � Tor
(Ae)n
n (Am,Mm ) � Tor

Am⊗kAm
n (Am,Mm )

by �at base change for Tor.

By the de�nition of smoothness we have that In is generated by a regular sequence of length dimA. In

the notation of proposition 95 we take B B A ⊗k A, and I the ideal that cuts out A. �

So we get that the Hochschild homology HH• (A) for a smooth algebra is concentrated in �nitely many

degrees (where it consists of projective modules of �nite rank). There is actually a converse to this,

characterising smoothness in terms of the vanishing of Hochschild homology, see [2].

3.5 The Hochschild–Kostant–Rosenberg isomorphism: Hochschild cohomology

One could follow a similar approach to proving the Hochschild–Kostant–Rosenberg isomorphism for

Hochschild cohomology. But in the special case of HH
• (A) one can take a shortcut, avoiding checking

explicitly that things are compatible with the di�erential, etc.

Indeed, as HH
• (A) is a graded commutative algebra, the identi�cation HH

1 (A) � Der(A) extends via

the universal property of the exterior product to a morphism

(145)

∧•
Der(A) → HH

• (A).

14
In positive characteristic it only implies regularity.
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To check that it locally is an isomorphism if A is a smooth k-algebra we will use the following result,

which says that Ext commutes with localisation at a prime ideal. It is a special case of [65, proposi-

tion 3.3.10].

Lemma 97. LetA be a noetherian ring, and M,N beA-modules where M is moreover �nitely generated.

Let p be a prime ideal of A, then

(146) Ext
n
A (M,N )p � Ext

n
Ap (Mp,Np)

for all n ≥ 0.

Then one can recycle the argument for Hochschild homology verbatim to obtain the following result.

Theorem 98. Let A be a smooth k-algebra. Then there exist an isomorphism of graded-commutative

algebras

(147) HH
• (A) �

∧•
Der(A).

Remark 99. Instead of Hochschild (co)homology we can also consider Hochschild (co)chains on one

hand, and the exterior powers of derivations (resp. di�erential forms) as a complex with zero di�erential

on the other. Then we have constructed a quasi-isomorphism between these complexes. But e.g. on the

level of Hochschild cohomology it is not a quasi-isomorphism of di�erential graded algebras. Fixing

this is part of the theory of Kontsevich’s formality, which we might get back to in ??.

Remark 100. If we write X = SpecA, then theorem 98 can be rewritten as

(148) HH
• (A) � Γ(X ,

∧•
TX )

and

(149) HH• (A) � Γ(X ,Ω•X /k )

In section 11 we will generalise this result to the non-a�ne setting. In this situation the Hochschild–

Kostant–Rosenberg isomorphism becomes a Hochschild–Kostant–Rosenberg decomposition, as in

section 11: the higher cohomology of polyvector �elds and di�erential forms starts playing a role.

3.6 Gerstenhaber calculus

This section will be extended at some point, but it seems that there is no operad-free proof of Hochschild
cohomology being isomorphic to polyvector �elds as Gerstenhaber algebras. That is unfortunate, as we
want to avoid operads in this chapter.

3.7 Exercises

Exercise 101. Explain remark 80.

Exercise 102. We can now discuss the dependence on the base �eld in the de�nition of Hochschild

(co)homology. In example 29 we have seen what the Hochschild (co)homology of a �eld considered as

an algebra over itself is. Compare this to HH1 (C), considered as a Q-algebra.

More generally, explain the relationship between Ω1

K/k and whether K/k is a �nite separable (= étale)

extension. A good reference on the role of Ω1

K/k for �eld extensions is [44, §25, §26].
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4 Variations on Hochschild (co)homology

This will be skipped during the course, unless there is time and interest to revisit the noncommutative

calculus of Hochschild (co)homology and cyclic homology at the end of the course. The interested

reader is invited to use the sources mentioned in the introduction.
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5 Deformation theory of algebras

We have seen in theorem 27 that the second Hochschild cohomology group HH
2 (A,M ) parametrises

extensions of A by M . As explained there, we will usually take M = A, so that we are e�ectively

describing algebra structures on A ⊕At with t2 that reduce to the original multiplication on A when t is

set to 0. In which case we call this a (�rst order) deformation of A, as is customary in algebraic geometry.

In this section we will discuss the higher-order deformation theory of an associative algebra A, not just

up to �rst-order. It turns out that this is also controlled by the Hochschild cohomology, where we will

also use

1. the Gerstenhaber bracket;

2. the third Hochschild cohomology HH
3 (A).

We will also discuss the general formalism of di�erential graded Lie algebras governing deformation

problems, using the Maurer–Cartan equation.

Summarising the results (at least on the in�nitesimal level) we can draw the following picture, which

gives the interpretation of the �rst, second and third Hochschild cohomology group in the deformation

theory of algebras, together with the role of the Gerstenhaber bracket. Recall that it has degree −1, so

we are landing in the appropriate spaces.

(150)

in�nitesimal automorphisms

HH
2 (A) HH

3 (A)

deformations obstructions

[HH
1 (A),−]

µ 7→[µ,µ]

To streamline the discussion we will in this section assume that k is not of characteristic 2. Whenever

necessary we will even restrict ourselves to characteristic zero, but this will be mentioned explicitly.

5.1 Obstructions and the third Hochschild cohomology

We have seen in theorem 27 that HH
2 (A) corresponds to �rst-order deformations of A. Given a �rst-

order deformation, the �rst step to take is to (try to) extend it to a second-order deformation. Sometimes

this is possible, sometimes it fails. When it fails it is because of an obstruction. In this section we discuss

how to analyse the failure of extending, using HH
3 (A). Once the �rst-order deformation is extended to

a second-order deformation, we can try to extend it further. Again the third Hochschild cohomology

and the Gerstenhaber bracket control this behaviour. If the extension is possible at each step we end up

with a formal deformation, which is discussed in section 5.2.

From �rst-order to second-order Let µ1 : A⊗k A→ A be a Hochschild 2-cocycle, for which µ0+ µ1t
is a �rst-order deformation, as in the discussion following theorem 27. We wish to extend this using

a µ2 : A ⊗k A→ A, such that

(151) a ∗ b = µ0 (a ⊗ b) + µ1 (a ⊗ b)t + µ2 (a ⊗ b)t
2
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gives an associative product on A[t]/(t3) (considered as a module, not as an algebra). The associativity

relation

(152) (a ∗ b) ∗ c = a ∗ (b ∗ c )

breaks up into two
15

conditions: one expression an equality for the coe�cients of t and another for t2. The

�rst condition we have already discussed, and says precisely that µ1 needs to be a Hochschild 2-cocycle.

The associativity condition at t2 can be written as

(153) µ1 (µ1 (a ⊗ b) ⊗ c ) − µ1 (a ⊗ µ1 (b ⊗ c )) = aµ2 (b ⊗ c ) − µ2 (ab ⊗ c ) + µ2 (a ⊗ bc ) − µ2 (a ⊗ b)c .

The right-hand side of this equality is given by d(µ2) (a ⊗ b ⊗ c ), so the left-hand side, considered as an

element of Homk (A
⊗3,A) must be a coboundary.

But the left-hand side (which only depends on µ1, which is a cocycle by the �rst associativity condition) is

always a cocycle, because it is equal to µ1◦µ1 =
1

2
[µ1, µ1], and the Gerstenhaber bracket of the cocycle µ1

with itself is again a cocycle. So the equality (153) says that the cocycle is actually a coboundary, so it

de�nes 0 ∈ HH3 (A). In general, when we are only given µ1 and we are looking for a compatible µ2, we

can de�ne the following.

De�nition 103. The class in HH
3 (A) de�ned by the left-hand side of (153) is the obstruction to extend-

ing µ1. We call HH
3 (A) the obstruction space of A.

If this obstruction class vanishes there exists a µ2 ∈ Homk (A
⊗2,A) which turns (151) into an associative

product on A[t]/(t3), which we will call a second-order deformation. So we have proven the following

proposition.

Proposition 104. Let µ0 + µ1t be a �rst-order deformation. Then it can be extended to a second-order

deformation if and only if [µ1, µ1] = 0 in HH
3 (A).

De�nition 105. We call [µ1, µ1] the obstruction to extending the �rst-order deformation µ0 + µ1t to a

second-order deformation. If it vanishes we call the deformation unobstructed, otherwise we call it an

obstructed deformation.

In particular, if HH
3 (A) = 0 then all obstructions automatically vanish. On the other hand it is possible

that HH
3 (A) , 0 but a �rst-order deformation still extends to a second-order deformation. For this we

can consider the following example, which explains this behaviour.

Example 106. Let A = k[x ,y, z]/(xy − z,x2,y2, z2). Then A is a commutative 4-dimensional algebra,

which we can also express as k[x]/(x2) ⊗k k[y]/(y
2). We will use the basis (1,x ,y, z) for A, and the

induced basis of tensor products for A ⊗k A. Consider the following two in�nitesimal deformations,

or 2-cocycles:

1. f : A ⊗k A→ A is the cocycle f (y ⊗ x ) = z, and 0 for other basis vectors;

2. д : A ⊗k A→ A is the cocycle д(x ⊗ x ) = y, and 0 for other basis vectors.

Then one sees that

1. f de�nes an unobstructed noncommutative �rst-order deformation of A;

2. д de�nes an unobstructed commutative �rst-order deformation of A.

On the other hand, f + д de�nes another �rst-order deformation of A, and one can check that

(154) [f + д, f + д] , 0

in HH
3 (A), so this is an obstructed deformation.

15
Or rather three, but we know that µ0 is associative. See also remark 109.
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Remark 107. Observe that, if the obstruction vanishes, there is actually a choice of µ2, all of which

gives an equivalent deformation. But for the purpose of extending it to higher-order deformations, the

choice might matter.

Extending to higher order deformations Let us now generalise the previous discussion to arbitrary

order, i.e. given an nth order deformation of A, when can we extend it to an (n + 1)th order deformation

of A? So we start with an assocative multiplication

(155) µ0 + µ1t + . . . + µnt
n

on A[t]/(tn+1). We wish to extend it to an associative multiplication on A[t]/(tn+2). The analysis as

before gives us a hierarchy of associativity conditions at t i , for i = 1, . . . ,n + 1, with only the condition

at tn+1 being new. By isolating the terms involving µ0 and µn+1 in this expression we obtain the equality

(156)

n∑
i=1

µi (µn+1−i (a ⊗ b) ⊗ c ) − µi (a ⊗ µn+1−i (b ⊗ c )) = d(µn+1) (a ⊗ b ⊗ c ).

As the left-hand side can be interpreted as the sum over [µi , µn+1−i ] this is a 3-cocycle. So by the same

reasoning as before we get the following, where we denote left-hand side by Dn+1 we have that

Proposition 108. Let µ0 + µ1t + . . . + µnt
n

be an nth order deformation. Then it can be extended to

an (n + 1)th order deformation if and only if Dn+1 = 0 in HH
3 (A).

Observe that, again, there is a choice of µn+1 at this point, and this choice might lead you into trouble

when you want to continue this process: for some choices the following step might be obstructed, whilst

for others it isn’t. See also exercise 130.

Remark 109. The condition for i = 0 is just saying that [µ0, µ0] = 0. Recall that the Gerstenhaber

bracket did not involve the original multiplication on A, and the condition that the bracket of µ0 with

itself vanishes expresses precisely that µ0 is associative.

Deformation functors To make the link with the formalism used in algebraic geometry we want to

consider algebras more general than k[t]/(tn+1). These are the test algebras, which are commutative

artinian local k-algebras with residue �eld k . In particular, the maximal ideal m is nilpotent. We will

denote them by R, so that there is no confusion with the algebras that we are deforming (which are

denoted A). Then generalising the notion of an nth order deformation we have the following.

De�nition 110. Let (R,m) be a test algebra. An R-deformation of A is an associative and R-bilinear

multiplication − ∗ − on A ⊗k R such that modulo m it reduces to the multiplication on A.

In other words, the square

(157)

(A ⊗k R) ⊗R (A ⊗k R) A ⊗k A

A ⊗k R A

−∗− µ0

commutes.

Then the equivalence relation for �rst-order deformations is generalised as follows.
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De�nition 111. Let − ∗1 − and − ∗2 − be two R-deformations. We say that they are (gauge) equivalent
if there exists an automorphism f of the R-module A ⊗k R which is the identity modulo m, such that

(158) f (a ∗1 b) = f (a) ∗2 f (b).

A morphism of test algebras f : R → S allows us to base change a deformation A ⊗k R to A ⊗k R ⊗R S ,

and hence we have a covariant functor

(159) Def (A,−) : R→ Set : R 7→ Def (A,R)

where Def (A,R) is the set of R-deformations of A up to equivalence. In particular, Def (A,k ) = {A}
and Def (A,k[t]/(t2)) = HH

2 (A).

Axiomatising the properties that this functor has, we obtain the following de�nition.

De�nition 112. A functor F : R→ Set is a deformation functor if for every cartesian diagram

(160)

R′ ×R R′′ R′′

R′ R

the induced morphism

(161) η : F (R′ ×R R′′) → F (R′) ×F (R ) F (R
′′)

is

1. bijective, if R � k ;

2. surjective, if R′ → R is surjective.

One can check that Def (A,−) is a deformation functor in this general sense of the word. Later on we

will see a way of describing the deformation functor using Hochschild cohomology, and explain the

role dg Lie algebras play in describing deformation functors.

We will say that F (k[t]/(t2)) is the tangent space to a deformation functor, so we see that the second

Hochschild cohomology is the tangent space to the deformation functor Def (A,−).

5.2 Formal deformations

The intuition from deformation theory in algebraic geometry tells us that deformations over

(162) k[[t]] = lim

←−−
k[t]/(tn+1)

are supposed to describe deformations in a su�ciently small (indeed: in�nitesimally small) open

neighbourhood around the algebra that we are interested in. These are precisely the deformations one

obtains when taking the limit of the process with the k[t]/(tn+1) in the previous section. Similarly

we will discuss later in this section how the step from k[t]/(tn+1) to local artinian k-algebras has an

analogue, going from k[[t]] to complete augmented k-algebras.
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One-parameter formal deformations Let A be a k-algebra. We can consider the k[[t]]-mod-

ule A[[t]]. We are interested in new algebra structures on the module A[[t]] in the following sense.

De�nition 113. A (one-parameter) formal deformation of A is an associative and k[[t]]-bilinear multi-

plication

(163) − ∗ − : A[[t]] ⊗k A[[t]]→ A[[t]]

which is continuous in the t-adic topology, such that

(164) a ∗ b ≡ ab mod t

for all a,b ∈ A ⊆ A[[t]].

The continuity in the previous de�nition is expressed by saying that the multiplication takes on the

form

(165)
*
,

∑
i≥0

ait
i+
-
∗
*.
,

∑
j≥0

bjt
j+/
-
=

∑
k≥0

∑
i+j=k

(ai ∗ bj )t
i+j ,

i.e. it is given by the Cauchy product. Because of this the multiplication is completely determined by the

restriction − ∗ − : A ⊗k A→ A[[t]], see appendix 2 for more information.

For a,b ∈ A we will write

(166) a ∗ b = µ0 (a ⊗ b) + µ1 (a ⊗ b)t + µ2 (a ⊗ b)t
2 + . . .

where µ0 (a ⊗ b) = µ (a ⊗ b) is the original multiplication, as before. So a formal deformation consists

of µi ’s such that they de�ne an associative multiplication, which is expressed by considering (156) for

all n simultaneously.

The relationship betweenk[[t]] andk[t]/(tn+1) is also easily expressed by observing that setting tn+1 = 0

in a formal deformation results in an nth order deformation.

Remark 114. Although we formally speaking haven’t introduced the notation for the left-hand side

yet (as this involves gauge equivalence for k[[t]]), we have a bijection

(167) Def (A,k[[t]]) = lim

←−−
Def (A,k[t]/(tn+1)),

in other words: a formal deformation consists of a compatible family of nth order deformations. It is

also important to observe that the obstructions we have discussed earlier tell us that the morphism

(168) Def (A,k[[t]]) → Def (A,k[t]/(tn+1)

is not necessarily surjective.

Complete augmented algebras Recall that an augmentation for an algebra is a morphism R → k
of k-algebras, whose kernel is then called the augmentation ideal R+. As in our setting it will be a

maximal ideal we will denote it m.

De�nition 115. Let R be a commutative augmented k-algebra. We say that R is a complete aug-
mented k-algebra if R is complete with respect to the m-adic topology.

In particular they are local, as completions at maximal ideals are local.
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Remark 116. The test algebras from before are complete augmented k-algebras: as m is nilpotent the

topology is trivial, and there is no need for a completion. Just like k[[t]] is the limit of the k[t]/(tn+1), a

complete augmented algebra is the limit of R/mn
, which are test algebras.

To deal with the topology, we will need to use the completed tensor product:

(169) A⊗̂kR B lim

←−−
A ⊗k R/m

n .

De�nition 117. Let R be a complete augmented algebra. Then a formal deformation of A over R is

an R-algebra B such that

1. B � ⊗̂kR as R-modules;

2. B reduces to A modulo m, i.e. B ⊗R k � A as k-algebras;

3. the multiplication is continuous, i.e. B � lim

←−−
B ⊗k R/m

n
.

We have the following lemma, which is an analogue of the observations we have made before that the

multiplication law on a deformation can be described by looking at a small part of the deformed algebra.

Lemma 118. Let R be a complete augmented algebra, and A′ a formal deformation of A over R. Then

the algebra structure on A′ is determined by the restriction to A ⊗k A.

5.3 The Maurer–Cartan equation

We will now discuss some aspects of the general formalism of deformation theory using dg Lie algebras.

The main example to keep in mind is of course C
• (A)[1] (and variations constructed using this). Recall

that the reason for the shift is to make the Gerstenhaber bracket of degree 0. In this way the relevant

cohomology groups will be H
0
, H

1
and H

2
, but they really are HH

1
, HH

2
and HH

3
.

We will now assume that k is of characteristic 0.

De�nition 119. Let g• be a dg Lie algebra. The Maurer–Cartan equation for g• is

(170) d( f ) +
1

2

[f , f ] = 0

where f ∈ g1. Elements of g1 satisfying the Maurer–Cartan are Maurer–Cartan elements, and we will

denote

(171) MC(g) B
{
f ∈ g1 | d( f ) +

1

2

[f , f ] = 0

}
⊆ g1

the space of Maurer–Cartan elements.

The dg Lie algebras that we will be using are constructed from C
• (A)[1] as follows: let (R,m) be a

complete augmented k-algebra, thenm⊗̂k C
• (A)[1] is again a dg Lie algebra, see exercise 234. As before,

the main examples to which we will apply this are (k[t]/(tn+1), (t )) and (k[[t]], (t )). For the latter we

will use the shorthand notation t C• (A)[1][[t]].

With these de�nitions we have the following theorem, explaining the importance of the Maurer–Cartan

equation in our situation.

Theorem 120. Let A be an associative algebra. Then

(172)

{
one-parameter formal deformations of A

}
MC(t C• (A)[1][[t]]).1:1
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Proof. Consider

(173) µ B
+∞∑
i=1

µit
i ∈ t C1 (A)[1][[t]],

i.e. µi ∈ C
2 (A). Then on A[[t]] we can de�ne the multiplication

(174) a ⊗ b 7→ ab +
+∞∑
i=1

µi (a ⊗ b)t
i

for a,b ∈ A, and then extended bilinearly to all of A[[t]]. We only need to check that associativity of this

multiplication corresponds to µ satisfying the Maurer–Cartan equation. But this is checked in exactly

the same was as for k[t]/(tn+1). �

Remark 121. The same proof works for arbitrary formal deformations over arbitrary complete aug-

mented k-algebras, using the dg Lie algebram⊗̂k C
• (A)[1], only adding some mild notational complexity.

Example 122. As an application of the previous remark, if we consider R = k[t]/(t2) then there is

no need for the completed tensor product, and MC(m ⊗k C
• (A)[1]) = MC(C• (A)[1]) is the set of

in�nitesimal deformations (not up to equivalence, yet).

Remark 123. If we take µ0 into account, then we observe that the Maurer–Cartan equation can be

reinterpreted using the equalities

(175)

[µ0 +
∑
i≥1

µit
i , µ0 +

∑
i≥1

µit
i
] = [µ0, µ0] + [µ0,

∑
i=≥1

µit
i
] + [

∑
i≥1

µit
i , µ0] + [

∑
i≥1

µit
i ,
∑
i≥1

µit
i
]

= 2 d
*
,

∑
i≥1

µit
i+
-
+ [

∑
i≥1

µit
i ,
∑
i≥1

µit
i
]

as [µ0, µ0] = 0 by associativity (see also remark 109), and [µ,−] = d by remark 46.

Gauge equivalence Observe that in the bijection of theorem 120 we are not considering formal

deformations up to gauge equivalence. Likewise, in example 122 we are not taking the equivalence

relation on �rst-order deformations into account. To do this, we need to introduce gauge equivalence

for the Maurer–Cartan locus. For convergence reasons, we will assume that g• is of the form h•⊗̂km,

for some complete augmented k-algebra (R,m) (as this is the situation we are interested in).

De�nition 124. Let д1,д2 ∈ MC(g•) be Maurer–Cartan elements. We say that they are gauge equivalent
if there exists an element h ∈ g0 such that

(176) д2 = exp(adh) (д1) +
1 − exp(adh)

h
(d(h)).

We can now relate the two notions of gauge equivalence. Observe that by the assumption on the

characteristic, a gauge equivalence ϕ between formal deformations − ∗1 − and − ∗2 − on A[[t]] can be

written as exp(h) for some h ∈ t Homk (A,A)[[t]]. And recall that Homk (A,A) = C
1 (A).

Proposition 125. The formal deformations − ∗1 − and − ∗2 − are gauge equivalent if and only if the

associated Maurer–Cartan elements д1 and д2 (see theorem 120) are gauge equivalent.
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Proof. If we denote µ0 : A ⊗k A→ A the original multiplication, then for a,b ∈ A we have that

(177)

a ∗2 b = ϕ
(
ϕ−1 (a) ∗1 ϕ

−1 (b)
)

= exp(h) (exp(−h) (a) ∗1 exp(−h) (b))

= exp(ad(h)) (µ + д1) (a ⊗ b)

=

(
µ + exp(ad(h)) (д1) +

1 − exp(ad(h))

ad(h)
(d(h))

)
(a ⊗ b)

by remark 46, and applying ad(h) once in all the non-constant applications to µ. So gauge equivalence

for − ∗i − is expressed through gauge equivalence for дi and vice versa. �

Deformation functors Without going into any details, one can extend the previous discussion to

obtain an isomorphism

(178) Def (A,R) � MC(m⊗̂k C
• (A)[1]).

At some point this discussion should be extended, but for time reasons we won’t go further into this in

class.

5.4 Kontsevich’s formality theorem

Let us (brie�y) return to the situation we used for the Hochschild–Kostant–Rosenberg theorem, i.e. we

let A be a smooth commutative k-algebra. We will again assume that the characteristic of k is zero.

Then we have shown in section 3 that

(179) HH
• (A) �

∧•
Der(A).

Although we haven’t proved it in these notes this isomorphism is compatible with the Lie brackets on

both sides: the Gerstenhaber bracket on the left, and the Schouten–Nijenhuis bracket on the right.

With the risk of causing some confusion we are going to combine a commutative algebra structure with

a Lie algebra structure, but not in the way we have done for a Gerstenhaber algebra structure (where

the Lie bracket has degree −1). In an ungraded setting (or with a Lie bracket of degree 0, with a suitable

modi�cation of the de�nition) we get the following notion.

De�nition 126. A commutative k-algebra A is a Poisson algebra if there exists a Lie bracket {−,−} on A
(i.e. a skew-symmetric bilinear map satisfying the Jacobi identity) such that the Poisson identity

(180) {ab, c} = a{b, c} + b{a, c}

holds.

We phrased the de�nition in this way because the algebraA is usually �xed, whilst the Lie bracket {−,−}

is obtained via some choices. Indeed, an element π of

∧
2
Der(A) can give rise to a Poisson structure via

the Lie bracket

(181) [a,b] = π (df ∧ dд)

where we used the pairing between

∧
2
Der(A) and Ω2

A. We said can give rise, because the Poisson

identity is not automatic: indeed, one can check that the associated bilinear morphism is a Poisson

structure if and only if [π ,π ] = 0, where [−,−] now denotes the Schouten–Nijenhuis bracket for the
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Lie algebra

∧•
Der(A). In this case we call π a Poisson bivector. Hence under the Hochschild–Kostant–

Rosenberg isomorphism we see that Poisson structures on A correspond to unobstructed in�nitesimal

deformations of A.

A deformation quantisation of a Poisson algebra is a one-parameter formal deformation − ∗ − of a

Poisson algebra A, such that

(182) a ∗ b − b ∗ a ≡ {a,b}t mod t2

for all a,b ∈ A. Using the correspondence between Poisson structures and unobstructed in�nitesimal

deformations this means that µ1 corresponds to π . If we equip the graded algebra of polyvector �elds

with the trivial di�erential, then

Then Kontsevich proved the following extremely important theorem, whose proof is out of scope of

these lecture notes.

Theorem 127 (Kontsevich formality). Let A be a Poisson algebra. Then A can always be quantised,

i.e. there always exists a deformation quantisation of this Poisson structure.

In other words, once we know that the �rst obstruction vanishes for a �rst-order deformation of A, we

can always �nd a one-parameter formal deformation lifting the �rst-order deformation.

In this version of the statement it is unclear what exactly the term formality is supposed to mean: the

presence of the word formal in the statement is a red herring here. Rather, we have on one hand the

dg Lie algebra C
• (A)[1], and on the other hand we can equip

∧•
Der(A)[1] with the zero di�erential

to obtain another dg Lie algebra. This latter dg Lie algebra is formal: it is quasi-isomorphic to its

cohomology as a dg Lie algebra16

We won’t de�ne precisely what a L∞-quasi-isomorphism is (at least for now), but imagining we have

done so, we have the following statement.

Theorem 128. There exists a L∞-quasi-isomorphism

(183)

∧•
Der(A)[1]→ C

• (A)[1].

In other words, Kontsevich formality says that the Hochschild complex is formal, when A is a smooth

commutative k-algebra.

We will probably come back to this at the very end of these lecture notes.

5.5 Exercises

Exercise 129. Check the claims in example 106, i.e.

1. f and д are cocycles;

2. f and д are unobstructed;

3. f + д is obstructed.

Also, assuming the Künneth formula for Hochschild cohomology
17

(184) HH
• (A1 ⊗k A2) � HH

• (A1) ⊗k HH
• (A2)

16
Because we are working over a �eld, every cochain complex is formal as a cochain complex. The extra structure matters

here.

17
Which we haven’t proven, but which holds in this case by [67, theorem 2.1.2].

46



describe the Hochschild cohomology of A using example 32.

Exercise 130. Perform the following reality checks.

1. If the trivial deformation has µi = 0 for all i ≥ 1, why can’t we choose µ1 non-zero, and then

take µi = 0 for all i ≥ 2?

2. Explain that, if µ1 = 0, then any cocycle µ2 gives a second-order deformation.

3. Use exercise 129 to construct an unobstructed second-order deformation, which extends trivially

to a third-order deformation (why can we do this?), such that the third-order deformation is

obstructed.

Exercise 131. Write out the details in the proof of theorem 120.

The following exercise is a modi�cation [67, exercises 4.1.14 and 4.1.15].

Exercise 132. Consider A = C[x ,y]. On A[[t]] we de�ne two multiplications − ∗i − as follows:

1. de�ne − ∗i − for x ,y ∈ A as

(185)

x ∗1 x = x2 x ∗1 y = xy

y ∗1 y = y
2 y ∗1 x = xy + t

resp.

(186)

x ∗1 x = x2 x ∗1 y = xy

y ∗1 y = y
2 y ∗1 x = xy exp(t ),

where exp(t ) is expanded as a formal power series in t ;

2. extend to all of A by writing monomials of A lexicographically, and de�ning xayb ∗i x
cyd using

the relation y ∗i x inductively whenever b, c ≥ 1.

With this de�nition

1. Describe (as much as possible of) µ1 for these products. Are they the same?

2. Describe (as much as possible of) µ2 for these products. Is µ2 = 0 for − ∗1 −?

3. If you like a challenge, describe µn completely for all n ≥ 1.

4. What can be said about the convergence of the star products?

The star product − ∗1 − gives rise to the Weyl algebra C〈x ,y〉/(xy − yx − 1), by setting t = 1.

The star product − ∗2 − gives rise to the skew planes Cq[x ,y] B C〈x ,y〉/(xy − qyx ) where q , 0, by

setting t = logq.

Exercise 133. Let g• be any dg Lie algebra. Prove that the Maurer–Cartan equation for д ∈ g1 is

equivalent to the �atness of the connection ∇д de�ned as

(187) ∇д ( f ) B d( f ) + [д, f ]

for f ∈ g0, i.e. that ∇2д = 0. Flatness of connections was the �rst instance in which the Maurer–Cartan

equation appeared.
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Chapter II

Di�erential graded categories

Conventions We will continue with our convention that k is a �eld, sometimes required to be of

characteristic 0.

6 Di�erential graded categories

6.1 Triangulated categories

To understand how dg categories come up as a natural solution to a problem it is necessary to talk

about triangulated categories, and some of their issues. It is possible to dedicate a whole monograph to

their foundations [49], so we will necessarily have to skip over some details. In this section we provide

just enough details to

1. understand why a notion of (dg) enhancement is necessary;

2. understand what happens with derived categories of dg categories.

The �rst two chapters of [24] are an excellent introduction, where more details can be found for the

interested reader. Another source with a detailed exposition on triangulated categories, and derived

categories of abelian categories is [29]. The latter discusses things in the unbounded setting, which is

what we will be using.

De�nition There are di�erent versions of the de�nition of a triangulated category (mostly with

variations in (TR4)), the following de�nition is the classical one as taken from [21, 49].

De�nition 134. A triangulated category is an additive category T together with

1. a translation functor (or shift functor, or suspension functor) [1], which is an automorphism of T;

2. a class of distinguished triangles closed under isomorphisms, which are sextuples (X ,Y ,Z ,u,v,w )
where u : X → Y , v : Y → Z , w : Z → X [1] are morphisms in T, and these are also often written

as

(188) X
u
→ Y

v
→ Z

w
→ X [1];

such that
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(TR0) for every object X of T we have that (X ,X , 0, idX , 0, 0) is distinguished;

(TR1) for every morphism u : X → Z there exists an object Z called the mapping cone of u and

morphisms v : Y → Z , w : Z → X [1] such that (X ,Y ,Z ,u,v,w ) is a distinguished triangle;

(TR2) the triangle (X ,Y ,Z ,u,v,w ) is distinguished if and only if (Y ,Z ,X [1],−v,−w,−u[1]) is.

(TR3) if (X ,Y ,Z ,u,v,w ) and (X ′,Y ′,Z ′,u ′,v ′,w ′) are distinguished triangles, and f : X → X ′ and

д : Y → Y ′ are morphisms such that the diagram

(189)

X Y Z X [1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

д

w

∃h f [1]

u′ v ′ w ′

commutes, then there exists a (not necessarily unique) morphism h : Z → Z ′ making the diagram

commute;

(TR4) if (X ,Y ,Z ′,u, j,k ), (Y ,Z ,X ′,v, l , i ) and (X ,Z ,Y ′,v ◦ u,m,n) are distinguished triangles, then

there exists a distinguished triangle (Z ′,Y ′,X ′, f ,д, j[1] ◦ i ) such that

(190)

X Y Z ′ X [1]

X Z Y ′ X [1]

X ′ X ′

Y [1] Z ′[1]

u j

v

k

∃f

v◦u m

l ∃д

n

i j[1]◦i

j[1]

commutes, and moreover u[1] ◦ n = i ◦ д.

One way of interpreting (TR4) is as an analogue of the third isomorphism theorem in an abelian category:

given the morphisms u : X → Y and v : Y → Z we can consider their composition and from (TR1) we

get three distinguished triangles, where (TR4) asserts that the mapping cones in these distinguished

triangles can be made into a distinguished triangle themselves in a way compatible with all other

triangles. It is still not clear whether (TR4) follows from the other axioms [49, remark 1.3.15].

Remark 135. Axiom (TR4) is also called the octahedral axiom. To understand the origin of this name

one has to collapse the identities, remove the shifts and fold the triangles on the left and right so that

they meet in a point, resulting in (with some imagination) the octahedron

(191)

Y ′

Z ′ X ′

X Z

Y

∃д∃f

j[1]◦i

i
v◦u

u

j

v
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where the distinguished triangles correspond to four non-adjacent faces, whilst the other four faces

correspond to the commutative squares in (191) containing an identity morphism.

Example 136. The main examples of triangulated categories are derived categories of abelian categories.

If A is a k-algebra then we will be interested in D(ModA), and provided A is noetherian, Db (modA).
If X is a scheme, we will be interested in D(QcohX ), and provided X is noetherian, Db (cohX ).

Non-functoriality of the cone There is an important de�ciency in the de�nition of a triangulated

category, which cannot easily be �xed. The mapping cone from (TR1) is only unique up to non-unique

isomorphism, so the morphism h : Z → Z ′ in (TR3) cannot be chosen functorially in general. In other

words, we don’t have a functor T[1] → T of triangulated categories. Indeed, we have the following

result (see [63, proposition 1.2.13]).

Proposition 137. Let T be a triangulated category which is idempotent complete (i.e. every idempotent

splits). If T admits a functorial cone, then T is semisimple abelian.

But the derived category of a non-semisimple k-algebra is not semisimple, so cones are not functo-

rial. For a short and self-contained discussion, see http://www.maths.gla.ac.uk/~gstevenson/no_

functorial_cones.pdf.

Compact objects Crucial in many aspects of the study of triangulated categories are compact objects.

This even lead Thomason to say

“Compact objects are as necessary to triangulated categories as air to breathe.”

A whole lot of theory can be developed without compact objects, as is evident from [49] but the notion

of compact objects does come with important consequences, some of which were discussed in class

(not reproduced here). Let us at least de�ne them formally, as we will need them later on.

De�nition 138. Let T be a triangulated category. We say that an object T ∈ T is compact if for all

families {Ti | i ∈ I } the natural morphism

(192)

⊕
i ∈I

HomT (T ,Ti ) → HomT
*
,
T ,

⊕
i ∈I

+
-

is an isomorphism. The full subcategory of compact objects will be denoted Tc
.

6.2 Di�erential graded categories

Motivation For a long time, when triangulated categories were mostly used as technical tools in

homological algebra, the non-functoriality of the cone was not really a problem. But once triangulated

categories were studied as objects on their own, this caused some issues. In the context of these

notes, recall that in corollary 16 we saw that Hochschild (co)homology only depended on the abelian

category of modules. If one generalises Morita theory for module categories to Morita theory for derived

categories of modules it turns out that Hochschild (co)homology only depends on the derived category.

But it is impossible to de�ne it intrinsically, which is what one would like to do in such a situation. This

is a somewhat obscure motivation for the need of enhancements, the usual invariant to be considered

in this situation is higher algebraic K-theory.

Another take on why the axioms for triangulated categories are lacking is that it is impossible to de�ne

new triangulated categories out of old. For instance, considering exact functors between triangulated

50

http://www.maths.gla.ac.uk/~gstevenson/no_functorial_cones.pdf
http://www.maths.gla.ac.uk/~gstevenson/no_functorial_cones.pdf


categories, it is usually not possible to equip this category with a triangulated structure. Likewise for

descent problems, for which a good explanation can be found in [61, §2.2(d)]. Summing up: triangulated

categories forget too much information, and we need to enhance their construction a bit to keep track

of this.

There are many solutions to this, but we will use dg categories. They are the closest to the homological

algebra we have been using all along.

There currently does not exist a textbook dedicated to dg categories, although Gustavo Jasso is writing

one. The main references are the original article by Keller [31] and his ICM address [33]. One can also

use [60, tag 09JD].

De�nitions We will now de�ne the notion of a dg category, and some associated constructions.

Implicitly in all the constructions in this section is a straightforward check of the axioms, left to the

reader.

De�nition 139. A di�erential graded category, or dg category is a category C such that

1. HomC (x ,y)
•

is a cochain complex of k-vector spaces for all x ,y ∈ Obj(C);

2. we have a morphism 1x : k → HomC (x ,x ) of cochain complexes
1

for all x ∈ Obj(C);

3. the composition

(193) µ = µx,y,z : HomC (y, z)
• ⊗k HomC (x ,y)

• → HomC (x , z)
•

is a morphism of cochain complexes for all x ,y, z ∈ Obj(C);

such that

1. the composition has a unit, i.e. the diagrams

(194)

HomC (x ,y)
• ⊗k k HomC (x ,y)

• ⊗k HomC (x ,x )
•

HomC (x ,y)
•

id ⊗1x

µx,x,y

and

(195)

k ⊗k HomC (x ,y)
•

HomC (y,y)
• ⊗k HomC (x ,y)

•

HomC (x ,y)
•

1y ⊗id

µx,y,y

commute for all x ,y ∈ Obj(C);

2. the composition is associative, i.e. the diagram

(196)

HomC (y, z)
• ⊗k HomC (x ,y)

• ⊗k HomC (w,x )
•

HomC (y, z)
• ⊗k HomC (w,y)

•

HomC (x , z)
• ⊗k HomC (w, z)

•
HomC (w, z)

id ⊗µw,x,y

µx,y,z ⊗id µw,y,z

µw,x,z

commutes for all w,x ,y, z ∈ Obj(C).

1
In particular we have that the image of 1 ∈ k under 1x is closed.
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This is just saying that it is a category enriched over the monoidal category of cochain complexes

of k-vector spaces.

Besides every (dg) algebra considered as a dg category with a single object, the following is an essential

example.

Example 140. We can turn the abelian category Ch(k ) of cochain complexes of k-vector spaces into a

dg category as follows. Recall that a morphism f : M• → N • in Ch(k ) is of the form

(197)

. . . M i−1 M i M i+1 . . .

. . . N i−1 N i N i+1 . . .

d
i−1
M

f i−1

d
i
M

f i f i+1

d
i−1
N d

i
N

where every square commutes.

We will de�ne the cochain complex Hom
Ch

dg
(k ) (M

•,N •)• by setting the degree n component the

morphisms of degree n, i.e. we consider morphisms

(198)

. . . M i−1 M i M i+1 . . .

. . . N i−1+n N i+n N i+1+n . . .

d
i−1
M

f i−1

d
i
M

f i f i+1

d
i−1+n
N d

i+n
N

where (and this is important) we do not impose that the diagrams commute. The di�erential of a

morphism f : M• → N •+n of degree n is then given by setting

(199) d( f i ) B dN • ◦f
i − (−1)n f i ◦ dM• : M

i → N i+1+n

for its component in position i .

If we are given a dg category, there are a few things we might want to do with it.

De�nition 141. Let C be a dg category. Its opposite dg category Cop
has the same objects as C, and

(200) HomCop (x ,y) B HomC (y,x ).

Observe that the tensor product of cochain complexes introduces an important sign in the de�nition

of the opposite dg category: if V •,W •
are complexes, then the transposition V • ⊗k W

• →W • ⊗k V
•

sends v ⊗w ∈ V i ⊗k W
j

to (−1)i jw ⊗ v .

Next we have two constructions that produce a k-linear category.

De�nition 142. Let C be a dg category. Its underlying category Z
0 (C) has the same objects as C, and

(201) Hom
Z
0 (C) (x ,y) B Z

0 (HomC (x ,y)).

A closely related construction is the following.

De�nition 143. Let C be a dg category. Its homotopy category H
0 (C) has the same objects as C, and

(202) Hom
H
0 (C) (x ,y) B H

0 (HomC (x ,y)).

The underlying category and homotopy categories are k-linear categories. The following two examples

explain their roles.
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Example 144. Consider the dg category Chdg (k ). Then

(203) Z
0 (Chdg (k )) � Ch(k )

where on the right we have the usual abelian category of cochain complexes over k , and

(204) H
0 (Chdg (k )) � K(k )

where on the right we have the usual (triangulated) homotopy category of k . Remark that in this case

we have an equivalence K(k ) � D(k ), as k is semisimple.

Remark 145. One can do the construction of example 140 for an arbitraryk-algebra, or even Grothendieck

abelian category, and the resulting dg category will be denoted Chdg (A). We obtain

(205)

Z
0 (Chdg (A)) � Ch(A)

H
0 (Chdg (A)) � K(A).

To write D(A) as the homotopy category of a dg category (which is an important thing to do!) we

need to �nd a dg enhancement. This is a (pretriangulated
2
) dg category C together with a triangulated

equivalence ϕ : H0 (C) → D(A).

In this case it can be given by the full subcategory of Chdg (A) provided by the homotopy-injective or K-
injective complexes, which are complexes I • such that HomK(A) (M

•, I •) = 0 wheneverM• is acyclic. This

goes through verbatim for arbitrary Grothendieck abelian categories, so this gives a dg enhancement.

See also proposition 159.

Another construction for dg categories, generalising a known construction for algebras, is that of the

tensor product.

De�nition 146. Let C and D be dg categories. Their tensor product C ⊗k D is the dg category C ⊗k D,

with

1. Obj(C ⊗k D) = Obj(C) × Obj(D);

2. (C ⊗k D) ((x ,y), (x ′,y ′)) B C(x ,x ′) ⊗k D(y,y ′) for (x ,y), (x ′,y ′) ∈ Obj(C ⊗k D);

3. 1(x,y ) B 1x ⊗ 1y for (x ,y) ∈ Obj(C ⊗k D);

4. the composition law is de�ned pointwise.

It is clear that the algebra k considered as a dg category is the unit for this tensor product.

6.3 Derived categories of dg categories

The main example of a triangulated category we have seen in section 6.1 is the derived category of

an abelian category. But dg categories also have a notion of derived category, and one of the original

reasons to introduce dg categories was to provide more �exibility in studying derived categories [31].

Most of the constructions here are the straightforward generalisations of notions for algebras to those of

dg categories, taking into account that everything is actually a cochain complex, and that dg categories

are like dg algebras with multiple objects. So many notions will be de�ned pointwise.

2
We say that a dg category C is pretriangulated if the image of the Yoneda embedding of H

0 (C) in H
0 (dgModC) is closed

under (inverse) suspension and mapping cones, for the canonical triangulated structure on H
0 (dgModC), so then we can

equip H
0 (C) with the induced triangulated structure.
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We will not be concerned with issues of set-theoretical or foundational nature
3
: they can be taken care

of, as in [31]. And as before with triangulated categories, we won’t be needing many abstract results in

any case.

Di�erential graded functors Of course we want to consider functors between dg categories, and

we want them to be compatible with the enrichment over cochain complexes. This yields the following

notion.

De�nition 147. Let C and D be dg categories. A dg functor F : C→ D is a functor such that

(206) Fx,y : C(x ,y) → D(F (x ), F (y))

is a morphism of cochain complexes, and

1. it is compatible with composition, i.e. the diagram

(207)

C(x ,y) ⊗k C(x ,y) C(x , z)

D(F (y), F (z)) ⊗k D(F (x ), F (y)) D(F (x ), F (z))

Fy,z ⊗Fx,y Fx,z

commutes for all x ,y, z ∈ ObjC);

2. it is compatible with the unit morphism, i.e. the diagram

(208)

k C(x ,x )

D(F (x ), F (x ))

1x

1F (x )
Fx,x

commutes for all x ∈ Obj(C).

There is also a notion of dg natural transformation between dg functors, the details of which we won’t

spell out for now.

The following is an important example of a dg functor, as it makes an appearance in the dg Yoneda

lemma.

Example 148. Let C be a dg category, and x ∈ Obj(C). Then the representable dg functor C(−,x ) is the

dg functor

(209) C(−,x ) : Cop → Chdg (k ).

It sends y ∈ Obj(C) to C(y,x ), and the morphisms

(210) C(y,y ′) → Chdg (k ) (C(y,x ),C(y
′,x ))

for y,y ′ ∈ Obj(C) are de�ned using the composition in C.

This example is just one instance of the following notion, generalising the notion of module over an

algebra to the setting of dg categories.

De�nition 149. Let C be a dg category. A (right) dg C-module is a dg functor M : Cop → Chdg (k ).
A morphism between (right) dg modules is a dg natural transformation, and the category of such

dg modules is denoted dgModC. This is itself a dg category.

3
If you want to see some example of what can go wrong, consider [60, tag 07JS].
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There is a minor clash of notation one needs to be aware of, as the dg category Chdg (k ) is the same

as dgModk .

We will also need the notion of a dg bimodule. As an A-B-bimodule (where A and B are k-algebras) is

also a right A ⊗k B
op

-module, we will say that a C-D-bimodule is a C ⊗k D
op

-module. If the need for

notation arises, we will use dgMod
D
C or dgModC⊗kD

op .

Example 150. An important example of bimodule for us in the context of Hochschild (co)homology, is

that of the diagonal bimodule. If C is our dg category, then it is the bimodule

(211) Cop ⊗k C→ Chdg (k ) : (x ,y) 7→ C(x ,y)

for x ,y ∈ Obj(C), which will be denoted C. In the setting of ordinary algebras, this is nothing but

considering A as an A-bimodule.

More generally, for any functor F : C→ D we de�ne the C-D-bimodule

(212) DF : C
op ⊗k D 7→ Chdg (k ) : (x ,y) 7→ D(F (x ),y).

The diagonal bimodule is thus the bimodule associated to the identity functor, as explained by the

following proposition.

The following proposition is an easy but important result [31, §6.1].

Proposition 151. Let C,D be dg categories. Let M be a C-D-bimodule. Then we have an adjunction

(213) − ⊗C M a HomD (M,−) : dgModC � dgModD

where

1. for a dg C-module N we consider the dg functor given by
4

(214)

N ⊗C M (x ) B coker
*.
,

⊕
y,y′∈Obj(D)

N (y ′) ⊗k D(y,y ′) ⊗k M (x ,y)
ν
→

⊕
y∈Obj(D)

N (y) ⊗k M (x ,y)+/
-

for x ∈ Obj(C), where the morphism ν is de�ned as

(215) ν (n ⊗ f ⊗m) B N (n) ( f ) ⊗m − n ⊗ M (x , f ) (m);

2. for a dg D-module N ′ we consider the dg functor given by

(216) HomD (M,N
′) (y) B dgModC (M (−,y),N ′)

for y ∈ Obj(D).

This is nothing but an intimidating looking version of the adjunction

(217) − ⊗A M a HomB (M,−) : ModA→ ModB,

when A and B are ordinary k-algebras, and M is an A-B-bimodule. This is an important source of

functors in noncommutative algebra. And when we are studying Fourier–Mukai transforms in algebraic

geometry (as we will in chapter III) we are doing exactly the same thing.

4
When we work with dg categories with a single object this reduces to the usual de�nition of the tensor product as the

quotient of the free module, modulo the relations encoding bilinearity.
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Example 152. In the context of Hochschild cohomology the main example is the diagonal bimodule,

as this induces the identity functor on the level of dg module categories. When A is an algebra, this

corresponds to considering A as an A-bimodule, and in the geometric setting we will use ∆∗OX .

We will come back to − ⊗C M after having introduced derived categories, as we will be interested in the

derived functor − ⊗L
C
M .

Derived categories We now come to a very important construction for dg categories. We will assume

that the reader is familiar with the construction of the derived category of an abelian category, for

which [24, §2] and [65, §10] are good references. As they work in settings with suitable boundedness

assumptions, but we work in the unbounded setting, one can �nd the appropriate generalisations in

[60, Tag 05QI].

The following two de�nitions are just pointwise generalisations of the familiar notions for cochain

complexes over an abelian category.

De�nition 153. Let M be a dg C-module. We say that it is acyclic if for all x ∈ Obj(C) the cochain

complex M (x ) is acyclic, i.e. H
n (M (x )) = 0 for all n ≥ 0.

Similarly we have the following.

De�nition 154. Let f : M → N be a morphism in Z
0 (dgModC). We say that it is a quasi-isomorphism

if fx : M (x ) → N (x ) is a quasi-isomorphism for all x ∈ Obj(C).

Without paying any attention to set-theoretical questions we can then de�ne the following.

De�nition 155. Let C be a dg category. Its derived category D(C) is the localisation of Z
0 (dgModC)

with respect to quasi-isomorphisms.

Equivalently, we can de�ne it as the Verdier quotient H
0 (dgModC)/H

0 (AcycC), where AcycC is the full

dg subcategory of acyclic dg modules.

As is the case for derived categories of abelian categories, we can also localise H
0 (dgModC) at quasi-

isomorphisms.

An important subcategory of D(C) is that of its compact objects.

De�nition 156. Let C be a dg category. Then Perf C B D(C)c is the full subcategory of compact objects

in D(C).

Remark 157. Alternatively, we could look at the set of representable dg modules. Then Perf C is the

thick closure of this set of objects, i.e. it is the smallest strict triangulated subcategory of D(C), closed

under taking direct summands of objects. In other words, we take the closure under shifts, cones and

summands.

Doing homological algebra in derived categories of dg categories In the context of derived

categories of abelian categories, the main notion for doing homological algebra is that of a resolution.

We need to generalise this to derived categories of dg categories, in order to understand how statements

like theorem 15 can be made to work in this more general setting. We won’t attempt to be exhaustive

here, we only aim to introduce some important notions. As mentioned before, because everything is by

default unbounded, we need to make sure we deal with this properly.

De�nition 158. Let C be a dg category. A dg C-module P is homotopy-projective if for every acyclic

dg C-module N • we have

(218) H
0 (dgModC) (P ,N ) � 0.
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This is inspired by the notion of homotopy-projective (or K-projective) cochain complexes, introduced

by Spaltenstein [57]. For Grothendieck abelian categories we will use the dual notion of a homotopy-

injective cochain complex. By the existence of homotopy-injective resolutions [60, tag 079P] we get the

following proposition.

Proposition 159. Let A be a Grothendieck abelian category. Then

(219) D(A) � K(hInjA),

where hInjA is the full subcategory of Ch(A) on the homotopy-injective cochain complexes.

So computing left exact functors in this setting is easy: one takes a homotopy-injective resolution of a

cochain complex, and apply the functor to it.

In the setting of dg categories we will mostly be working with the analogues of right exact functors,

namely the tensor product introduced in proposition 151. So we will mostly be concerned with homotopy-

projective resolutions. These exist, by [31, §3.1] or [11, appendix C]. In particular, we have the following

description of the derived category of a dg category.

Theorem 160. Let C be a dg category. Then

(220) D(C) � H
0 (hProjC),

where hProjC is the full dg subcategory of dgModC on the homotopy-projective dg modules.

The results cited for this description construct not just homotopy-projective resolutions, rather they

construct an even stronger notion. This is analogous to what one does for the construction of projective

resolutions of a module: these are usually free resolutions. But for dg modules we cannot use free objects

as freely
5
, like we do when working with projective resolutions of modules. See exercise 167 for an

easy exercise explaining this. Rather we will use the following notion.

De�nition 161. Let M be a dg module. It is free if it is the direct sum of shifts of representable

dg modules.

It is semifree if there exists a �ltration

(221) 0 = M−1 ⊆ M0 ⊆ . . .Mi ⊆ Mi+1 ⊆ . . . ⊆ M

which

1. is exhaustive, i.e. M =
⋃

i≥0Mi ;

2. the quotients Mi+1/Mi are free for all i ≥ 0.

This is a special case of a homotopy-projective dg module.

Lemma 162. Let M be a semi-free dg module. Then it is homotopy-projective.

Proof. We will prove the result by induction. We have that M0 is a free module, and by the Yoneda

lemma these are homotopy-projective.

Assume that Mi is homotopy-projective for some i ≥ 0, then we can consider the triangle

(222) Mi
ji
→ Mi+1 → Mi+1/Mi

+1
→ .

Applying the cohomological functor H
0 (dgModC (−,N ), where N is an acyclic dg module shows

that Mi+1 is homotopy-projective.

5
Pun very much intended.
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Because the inclusions in the �ltrations are split on the graded level, and split exact sequences provide

the triangles in the homotopy category, we can describe M using the triangle

(223)

⊕
i≥0

Mi
Φ
→

⊕
i≥0

Mi → M
+1
→

in H
0 (dgModC, where Φ is de�ned as

(224) Mi

(
id

−ji

)
→ Mi ⊕ M

and ji : Mi ↪→ Mi+1 is the inclusion.

Now we just apply the cohomological functor H
0 (dgModC (−,N ) to (223), and use the same reasoning

to conclude. �

When de�ning Hochschild cohomology we will use the following lemma.

Lemma 163. Let M be a dg module, together with a �ltration

(225) 0 = M−1 ⊆ M0 ⊆ . . .Mi ⊆ Mi+1 ⊆ . . . ⊆ M

which is exhaustive, such that Mi+1/Mi is semifree for all i ≥ 0. Then M itself is semifree.

6.4 Exercises

Exercise 164. Prove that example 140 is an example of a dg category.

Exercise 165. Prove the two equivalences from example 144.

Exercise 166. Prove the claim in remark 157.

Exercise 167. Explain what goes wrong in the following example. Consider k as a dg algebra. Let M be

the dg module (i.e. cochain complex) which is

(226) . . . → k
id

→ k → . . .

concentrated in degrees 0 and 1. It is generated by 1 in degrees 0 and 1. Why is the map

(227) k ⊕ k[1]→ M

which sends the generator of k to the corresponding generator of M not the start of a free resolution?

Exercise 168. Prove lemma 163.
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7 Hochschild (co)homology for di�erential graded categories

There are multiple ways to advocate a generalisation of Hochschild (co)homology from algebras to more

general objects, such as exact, abelian or dg categories. It is probably correct to say that historically

speaking the generalisation of (lower) algebraic K-theory of rings to higher algebraic K-theory which

required the use of categories for its de�nition, suggested that there should also be a notion of Hochschild

homology and cyclic homology together with a (higher) Chern character in these more general settings

[34].

In the context of these lecture notes, which rather focus on Hochschild cohomology, we will use a

di�erent motivation to explain the need for a de�nition in a more general setting. We have already

observed in remark 14 that Hochschild cohomology is not a functor for arbitrary morphisms of algebras.

On the other hand we have seen in corollary 16 that Hochschild (co)homology is Morita invariant. These

are equivalences of module categories which are not induced by a morphism between algebras, but

rather by a bimodule. If f : A→ B is a morphism of algebras, then we can equip B with the structure of

an A-B-bimodule: on the left the multiplication by a ∈ A is given by composition with f , whilst on the

right we just use the ordinary multiplication. In this way we have generalised the notion of morphism

to a much more �exible setting: any bimodule M gives a functor

(228) − ⊗A M : ModA→ ModB

and for many things we are only interested in properties of the module category, not of the underlying

algebras themselves. Observe that

1. the generalisation from morphisms of algebras to functors induced by bimodules is not yet enough

to improve the lack of functoriality for Hochschild cohomology, except for Morita equivalences;

2. in the setting of dg categories this notion of bimodules also makes perfect sense, and they give

rise functors between categories of dg modules and their derived categories.

We have not yet proven this special case yet (it will follow from the more general results in section 8), but

it can be shown that Hochschild cohomology doesn’t depend on ModA, but rather only on D(ModA).
Indeed, by [53, 52] we have a Morita theory for derived categories of algebras, and we know that

Hochschild cohomology can be de�ned in terms of Ext
i
Ae , which can be computed from the derived

category.

The generalisation of Hochschild cohomology to dg categories not only allows it to be de�ned in new

settings, we also get a notion of limited functoriality, which forms the topic of section 8. It is limited, in

the sense that we don’t get functoriality for arbitrary dg functors or quasi-functors. Rather, the correct

statement
6

to make is that Hochschild cohomology is (at least) a functor for the non-full subcategory of

dg categories localised at Morita equivalences where one takes only the quasi-functors − ⊗L
A
M into

account which are fully faithful.

The original application for this form of functoriality for Hochschild cohomology was the study of Koszul

duality [30, 56]. But we will not discuss this, rather we are interested in the functoriality for fully faithful

functors (e.g. provided by open immersions, but more importantly in the setting of semi-orthogonal

decompositions).

6
We will not prove this particular version of the statement as we don’t want to go too much into the homotopy theory

of dg categories. But taking as given that one can construct a localisation of the category of (small) dg categories at Morita

equivalences, all the other ingredients will be discussed.
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7.1 De�nition

If we were only interested in Hochschild cohomology as a vector space (or graded algebra, at most), we

could take theorem 15 as our guiding principle, and for a dg algebra A (resp. dg category C) de�ne its

Hochschild (co)homology as

(229) HH
n (A) B HomD(Ae) (A,A[n])

resp.

(230) HH
n (C) B HomD(Cop⊗kC) (C,C[n])

where C considered as a C-bimodule is introduced in example 150.

This has the obvious drawback that we are not just interested in cohomology, but also in an explicit

complex computing it, together with extra structure on this complex. With our understanding of

resolutions of dg modules we can construct a semi-free resolution of C as a C-bimodule as follows, as

we did for algebras in de�nition 1.

The bar resolution When trying to cook up a bar resolution for a dg algebraA (let alone a dg category)

one runs into the problem that A is already a cochain complex. So instead of resolving a module by a

cochain complex as we do for an algebra, we have to resolve a cochain complex by another cochain

complex, as explained before. Another issue is that in general A⊗i+2 is no longer free as a dg A-bimodule.

In [31, §6.6] it is explained how to cook up a bar resolution in the setting of dg categories. Let us quickly

recall the approach there.

De�nition 169. Let C be a dg category. The bar resolution C
bar (C) of the diagonal bimodule C is the

dg bimodule whose values at (y,y ′) are given by the Tot
⊕

of the bicomplex whose columns are

(231) . . . → C
bar

1
(C) (y,y ′) → C

bar

0
(C) (y,y ′) → 0

where each component is given by the bimodule

(232) C
bar

i (C) (y,y ′) B
⊕

x0, ...,xi ∈Obj(C)

C(xi ,y) ⊗k C(xi−1,xi ) ⊗k . . . ⊗k C(x0,x1) ⊗k C(y
′,x0)

and the di�erential is given by

(233) d(c0 ⊗ . . . ⊗ cn+1) B
n∑
i=0

(−1)ic0 ⊗ . . . ⊗ cici+1 ⊗ . . . ⊗ cn+1.

The augmentation is the morphism of bimodules

(234) ϵ : Cbar (C) → C

which is

(235) ϵy,y′ :
⊕

x ∈Obj(C)

C(x ,y ′) ⊗k C(y,x ) → C(y,y ′) : c ⊗ c ′ 7→ c ◦ c ′

and 0 everywhere else.

One can then check the following proposition, see also [31, §6.6].

Proposition 170. The morphism ϵ is a semifree resolution, i.e. C
bar (C) is semifree, and ϵ is a quasi-

isomorphism.
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De�nition using the bar resolution We can now de�ne the Hochschild cochain complex of C in

exactly the same way as we did in de�nition 7. We could easily replace this de�nition by a more general

one with values in an arbitrary bimodule, but we will not use this.

De�nition 171. Let C be a dg category. The Hochschild cochain complex for C is taken to be

(236) C
• (C) B dgModCop⊗kC

(Cbar (C),C).

As in section 2 we can equip with cochain complex with extra algebraic structure, which in turn induces

extra structure on its cohomology. The main result (for algebras) was that on cohomology we have a

Gerstenhaber algebra structure, and that on the complex we have a dg Lie algebra structure, useful for

deformation theory. We didn’t explicitly discuss the dg algebra structure on the Hochschild cochain

complex, nor its compatibility with the dg Lie algebra structure: in remark 56 we remarked that it is

possible to describe this explicitly, but we postponed the discussion: in section 7.3 we will get back to

this.

We will refrain (at least for now) of discussing properties of Hochschild homology for dg categories.

The fundamental results are given in [34], and are used in the setting of noncommutative motives in

[59].

7.2 Reinterpretation

As in propositions 9 and 10 we can again use the tensor-Hom adjunction to reinterpret the Hochschild

(co)chain complex. We will only discuss this for Hochschild cochains though, without giving too many

of the explicit technical details.

De�nition 172. The Hochschild cochain complex of C is the Tot

∏
of the bicomplex whose (i, j )th entry

is

(237)

∏
x0, ...,xi ∈Obj(C)

dgModk (C(xi−1,xi ) ⊗k . . . ⊗k C(x0,x1),C(x0,xi ))
j

where the horizontal arrows are the Hochschild di�erentials

(238)

d( f ) (cn+1 ⊗ . . . ⊗ c1)

B (−1) |c1 | |f |cn+1 ◦ f (cn ⊗ . . . ⊗ c1)

+

n∑
i=1

(−1)ϵi f (cn+1 ⊗ . . . ⊗ cn−j+2 ◦ cn−j+1 ⊗ . . . ⊗ c1)

+ (−1)ϵn+1 f (cn+1 ⊗ . . . ⊗ c2) ◦ c1

where ϵi B | f | − i +
∑i−1

j=1 |ci |, and the vertical arrows are the di�erentials from the dg category dgModk .

We refrain from checking that d
2 = 0. This would also follow by carefully translating the di�erential

on the bar resolution of the diagonal bimodule through the tensor-Hom adjunction, as we have the

following proposition.

Proposition 173. The Hochschild cochain complexes from de�nition 171 and de�nition 172 are iso-

morphic.

Example 174. When A is a dg algebra, the bicomplex we are considering has the following shape

(239)
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. . . . . . . . . . . .

. . . 0 dgModk (k,A)
1

dgModk (A,A)
1

dgModk (A
⊗2,A)1 . . .

. . . 0 dgModk (k,A)
0

dgModk (A,A)
0

dgModk (A
⊗2,A)0 . . .

. . . 0 dgModk (k,A)
−1

dgModk (A,A)
−1

dgModk (A
⊗2,A)−1 . . .

. . . . . . . . . . . .

.

If C is a dg category with �nitely many objects it is again possible to explicitly write down the bicomplex,

and understand the (locally �nite number of) morphisms.

7.3 Extra structure on Hochschild cochains

In remark 56 we postponed the discussion of the extra structure on the Hochschild cochain complex. It

is high time we take up this promise. For now we will take A just an ordinary k-algebra, for notational

ease. We will assume that with appropriate signs everything can be generalised to dg categories, and

having understood the situation for usual algebras this shouldn’t be too hard, but we don’t want to

focus too hard on the formal aspects here for time reasons. The discussion is also a bit more abstract

and less self-contained than the rest of these notes, so we will need to accept on faith that all these

things can be made work.

The algebraic structure on Hochschild cohomology is that of a Gerstenhaber algebra, as shown in

proposition 55. There is an operad governing this structure [41, §13.3.12], and as explained in §10

of op. cit. one can consider a homotopical version of a (Koszul) operad (such as the Gerstenhaber operad).

The most famous example is that of associative algebras, which give rise to “strong homotopy associative

algebras” or A∞-algebras (which are generalisations of dg algebras involving higher multiplications).

The cohomology of the homotopical version of an algebra for a certain operad is an algebra for the

operad you started with. In particular, there exists the notion of a G∞-algebra, and the Hochschild

cochain complex of an algebra can be equipped with this structure.

This is an abstract notion, and there are more concrete versions of this, inspired by how we de�ned the

Gerstenhaber bracket: this was done using the circle product as in de�nition 43. This notion can be

generalised to that of brace operations. This gives rise to the notion of what is (unfortunately) called a

homotopy Gerstenhaber algebra in [16]. But this is not an instance of the construction mentioned in

the previous paragraph, and sometimes a G∞-algebra is also called a homotopy Gerstenhaber algebra. . .

As discussed in section 2.1 one can show that the cohomology of a homotopy Gerstenhaber algebra

can be equipped with the structure of a Gerstenhaber algebra, by setting [f ,д] B f {д} − д{ f }. So a

homotopy Gerstenhaber algebra is not even a homotopical version of a Gerstenhaber algebra as such.

More generally, in [17] the notion of a B∞-algebra was introduced. Again this is unfortunate choice

of notation, as it is not an instance of the construction mentioned two paragraphs ago. The B stands

for the use of brace operations, as in the previous paragraph. It is a perfectly �ne dg operad though,

for which a good homotopy theory was developed [22]. The B∞-algebra structure on the Hochschild

cochain complex is de�ned via the homotopy Gerstenhaber algebra, which has the bene�t of being

more concrete, and a direct generalisation of what we have seen in section 2.1.
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We will brie�y discuss the notion of a homotopy Gerstenhaber algebra and that of a B∞-algebra, as

those are the ones relevant to (limited functoriality of) Hochschild cohomology of dg categories.

On homotopy Gerstenhaber algebras

De�nition 175. A homotopy Gerstenhaber algebra is a dg algebra G• together with brace opera-
tions д{д1, . . . ,дm } which are of degree |д | +

∑m
i=1 ( |дi | − 1), such that these operations are compatible

in the following way:

pre-Jacobi identities

(240)

д{д1, . . . ,дm }{h1, . . . ,hn }

B
∑

0≤i1≤...≤im ≤n

(−1)ϵд
{
h1, . . . ,hi1 ,д1{hi1+1, . . .}, . . . ,hn

}
where ϵ B

∑m
p=1 ( |дp | − 1)

∑ip
q=1 ( |hq | − 1);

distributivity

(241) (д1 · д2){h1, . . . ,hn } =
n∑
i=1

(−1)ϵд1{h1, . . . ,hi } · д2{hk+1, . . . ,hn };

higher homotopies we omit these, as for the only example we are interested in (that of Hochschild

cohomology), they follow rom the other axioms and the compatibilities discussed in remark 46.

We can then de�ne the generalisation of the circle product to all brace operations as follows.

De�nition 176. The homotopy Gerstenhaber algebra structure on C
• (C) is given by

1. the Hochschild di�erential;

2. the cup product;

3. the brace operations

(242)

f { f1, . . . , fm }(a1 ⊗ . . . ⊗ an )

B
∑

0≤i1≤...≤im ≤n

(−1)ϵ f
(
a1 ⊗ . . . ⊗ ai1 ⊗ f1 (ai1+1 ⊗ . . . ⊗ ai1+ |f1 | ) ⊗ ai1+ |f1 |+1⊗

. . . ⊗ fm (aim + 1 ⊗ . . . ⊗ aim+ |fm | ) ⊗ aim+ |fm |+1 ⊗ . . . ⊗ an
)

where n = | f | +
∑m
p=1 ( | fi | − 1), and ϵ B

∑m
p=1 ( | fp | − 1)ip .

One can then prove the following.

Theorem 177. With the structure from above, C
• (C) is a homotopy Gerstenhaber algebra.

On B∞-algebras For more details on B∞-algebras one is referred to [17, 64]. If V • is graded vector

space, we can consider the cofree tensor coalgebraT(V •[−1]) on the shift ofV •, where the comultiplication

is given by deconcatenation.

De�nition 178. Let V • be a cochain complex. A B∞-algebra structure on V • is the structure of a

dg bialgebra on T(V •[−1]).

This is a short, but possibly unenlightening de�nition, as it is unclear how it relates to the de�nition of

a homotopy Gerstenhaber algebra. As explained in [17, §5.2] it is possible to
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1. translate the di�erential on T(V •[−1]) into a sequence of operations

(243) mi : (V
•)⊗i → V •

for i ≥ 0, of degree 2 − i , encoding the structure of an A∞-algebra;

2. translate the multiplication on T(V •[−1]) into a sequence of operations

(244) mi, j : (V
•)⊗i ⊗k (V •)⊗j → V •

for i, j ≥ 0, of degree 1 − i − j

which are compatible with each other, through the compatibilities encoded in the term dg bialgebra.

In the case of the Hochschild complex, we can equip it with the structure of a B∞-algebra through its

structure of a homotopy Gerstenhaber algebra, by setting

(245)




m0 B 0,

m1 ( f ) B d( f ),

m2 ( f1, f2) B f1 ∪ f2

mi B 0 ∀i ≥ 3

m0,1 =m1,0 B id

m0,i =mi,0 B 0 ∀i ≥ 2

mi, j B 0 ∀i ≥ 2

m1, j ( f ; f1, . . . , fj ) B f { f1, . . . , fj } ∀j ≥ 1

as in [64, §3.2], for f , f1, . . . , fj ∈ C
• (A).

Corollary 179. Let C be a dg category. Then C
• (C) has the structure of a B∞-algebra.

The upshot of this is that there exists a good homotopy theory for B∞-algebras, which allow us to

invert morphisms of B∞-algebras which are quasi-isomorphisms on the underlying complexes. So we

have a category Ho(B∞), the homotopy category of B∞-algebras, in which quasi-isomorphisms are

actual isomorphisms, just like we have done when constructing the derived category by inverting

quasi-isomorphisms. This will be important when developing limited functoriality for Hochschild

cohomology of dg categories.

7.4 Exercises

Exercise 180. 1. Let V be a �nite-dimensional vector space. Let C be the dg category with 2 ob-

jects {1, 2}, such that

(246)

HomC (1, 1) B k · id1

HomC (1, 2) B 0

HomC (2, 1) B V

HomC (2, 2) B k · id2

with zero di�erentials, and the obvious composition. Compute the Hochschild cohomology of C.

2. Can you explain how to get rid of redundant information in the Hochschild cochain complex?

3. Look up the de�nition of the reduced Hochschild cochain complex of an algebra, and explain the

relationship with your previous observation.
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4. ReplaceV the cochain complex k ⊕k[n], for n ∈ Z, with zero di�erential. Compute the Hochschild

cohomology of C.

This construction produces examples of a smooth and proper dg category, with negative Hochschild

cohomology. We will see in the next chapter that this is impossible for a smooth projective variety.

It’s also a very special case of the gluing we will consider in section 8.2, and the long exact sequence for

the Hochschild cohomology of a gluing in corollary 192 will con�rm your computations in this special

case.
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8 Limited functoriality for Hochschild cohomology

We have seen in remark 14 that Hochschild cohomology of an algebra with values in itself is not

functorial for algebra morphisms, as there is a con�ict of variances in the arguments. Luckily we

can get around this, starting with the simple observation that if we have a full dg subcategory, then

the Hochschild complex from de�nition 172 for the bigger subcategory has an obvious projection

down to the Hochschild complex of the smaller subcategory. This observation is the beginning of this

whole section, as for an arbitrary bimodule M we can construct a third dg category, with two fully

faithful dg functors towards it. So we get morphisms in the other direction on the level of Hochschild

cochains, and if we can invert one of these, we can de�ne a comparison morphism between the original

dg categories.

Using this we will not be able to obtain functoriality for arbitrary functors (or bimodules) between

dg categories, but we will obtain a limited functoriality for an important class of functors (or bimodules).

It would be interesting to extend this to other cases, if you feel like pursuing a challenge.

8.1 Functoriality for full subcategories

If we have a fully faithful dg functor F : C ⊆ D, then we can immediately produce a map between the

Hochschild complexes of these categories as follows, which is compatible with the higher structure.

Proposition 181. Let F : C→ D be a fully faithful dg functor. There is a restriction morphism

(247) F ∗ : C• (D) → C
• (C)

which is a morphism of B∞-algebras.

Proof. Before taking the Tot

∏
in the de�nition of the Hochschild cochain complex we de�ne the

morphism as

(248)

∏
y0, ...,yp ∈Obj(D)

dgModk

(
D(yp−1,yp ) ⊗k . . . ⊗k D(y0,y1),D(y0,yp )

)

∏
x0, ...,xp ∈Obj(C)

dgModk

(
D(F (xp−1), F (xp )) ⊗k . . . ⊗k D(F (x0), F (x1)),D(F (x0), F (xp ))

)

∏
x0, ...,xp ∈Obj(C)

dgModk

(
C(xp−1,xp ) ⊗k . . . ⊗k C(x0,x1),D(x0,xp )

)
.

π

It can be checked that the homotopy Gerstenhaber algebra structure is compatible with projection onto

the subcomplex given as above. �

So having multiple objects is what makes this possible, explaining the need to generalise to dg categories

(one could also just generalise in the direction of k-linear categories, but the extra �exibility of using

dg categories will be useful).

Luckily for us, the story doesn’t end here, as this is a very special situation, rarely satis�ed in practice.

Nevertheless, it is precisely what we need to bootstrap to a much more general setting.
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8.2 Gluing dg categories

In ?? we will consider semiorthogonal decompositions for triangulated categories, where we will return

to this notion. But now we will (somewhat anachronistically) de�ne the notion of a gluing of dg

categories along a bimodule.

De�nition 182. Let C and D be dg categories. Let M be a C-D-bimodule. Then the gluing of C and D

along M is the dg category G B G(C,M,D), such that Obj(G) B Obj(C) t Obj(D), and

(249)

G(x ,x ′) B C(x ,x ′)

G(x ,y) B 0

G(y,x ) B M (y,x )

G(y,y ′) B D(y,y ′)

for x ,x ′ ∈ Obj(C) and y,y ′ ∈ Obj(D).

We can pictorially represent this also as upper triangular matrices as follows:

(250) G(C,M,D) =

(
C M
0 D

)
.

But we can apply proposition 181 to this setting, as we have inclusions of full subcategories iC : C ↪→ G

and iD : D ↪→ G.

Corollary 183. There exists a diagram

(251)

C
• (G)

C
• (C) C

• (D)

i∗
C

i∗
D

of morphisms of B∞-algebras.

The goal will now be to �nd conditions on the bimodule M ensuring that i∗
D

is invertible, so that we

can de�ne the morphism

(252) φM : i∗C ◦ (i
∗
D)
−1
: C
• (D) → C

• (C).

In most cases it will not be possible to ensure that i∗
D

is an honest isomorphism that we can invert.

Rather, we will need to pass to the homotopy category Ho(B∞) of B∞-algebras, as it will only be a

quasi-isomorphism.

An important result we will need to understand when this is possible is the following. Its proof is not

very interesting, the �rst equivalence follows from standard facts in triangulated categories, the second

uses standard formal results which we mention below.

Proposition 184. Let C,D be dg categories. Let M be a C-D-bimodule. The following are equivalent:

1. − ⊗L
C
M : Perf C→ D(D) is fully faithful;

2. for all x ,y ∈ Obj(C) and for all n ∈ Z the map

(253) D(C) (hx , hy[n]) → D(D) (M (−,x ),M (−,y)[n])

is an isomorphism;
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3. the left action morphism

(254) λ : C→ D(D) (M,M )

is an isomorphism in D(Cop ⊗k C).

Remark 185. For the discussion of limited functoriality it is important to remark that one cannot

compose functors of the type − ⊗L
C
M and preserve the fully faithfulness, see [30, §3.4].

We will be using the following lemma implicitly.

Lemma 186. Let M be a C-D-bimodule, and x ∈ Obj(C). Then there exists a natural isomorphism

(255) h
x
⊗AM � M (−,x ).

In particular we can understand the left action morphism λ through the following lemma.

Lemma 187. Let M be a C-D-bimodule. Then the diagram

(256)

C(x ,y) dgModD (M (−,x ),M (−,y))

dgModC (h
x , hy ) dgModD (h

x
⊗CM, h

y
⊗CN )

λ

commutes for all x ,y ∈ Obj(C).

An auxiliary complex We will de�ne an auxiliary complex, which computes the extensions of the

gluing bimodule.

De�nition 188. Let M be a dg C-D-bimodule. We denote C
• (C,M,D) the Tot

∏
of the bicomplex which

has

(257)⊕
l+m=p

∏
x0, ...,xl ∈Obj(C)
y0, ...,ym ∈Obj(D)

dgModk (C(xl−1,xl )⊗k . . .⊗kC(x0,x1)⊗kM (ym ,x0)⊗kD(ym−1,ym )⊗k . . .⊗kD(y0,y1),M (y0,xl )

in degree p ≥ 0, with the horizontal di�erential given by the same formula as the Hochschild di�erential.

We have the following interpretation for this cochain complex, which says that the �rst component

of the dgModk in (257) gives a homotopy-projective resolution of M , which is proven along the same

lines as before.

Proposition 189. We have a quasi-isomorphism

(258) C
• (C,M,D) � RHomD(Cop⊗kD) (M,M ).

There is another important interpretation for the complex C
• (C,M,D), as discussed in proposition 190.

We de�ne the following two morphisms: a morphism

(259) γ : C• (C) → C
• (C,M,D)

which in the component dgModk (C(xp−1,xp )⊗k . . .⊗kC(x0,x1)⊗kM (y0,xp ),M (y0,xp )) sends c ∈ Cp (C)
to the morphism u ⊗m 7→ c (u) ⊗m. Similarly we de�ne

(260) δ : C• (D) → C
• (C,M,D).
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We also have the left action morphism

(261) λ : C→ dgModD (M,M )

ofC-bimodules, which for objectsx ,x ′ ∈ Obj(C) is the action morphismC(x ,x ′) → dgModD (M (−,x ),M (−,x ′)).
Under the standing assumption onM we obtain a morphism of cochain complexes we have that dgModD (M,M )
computes the derived functor in the tensor-Hom adjunction, so by a slight abuse of notation we obtain

a morphism

(262) λ∗ : RHomD(Cop⊗kC) (C,C) → RHomD(Cop⊗kC) (C,RHomD (M,M )).

Moreover, we have that

(263) RHomD(Cop⊗kC) (C,RHomD (M,M )) � RHomD(Cop⊗kD) (M,M ).

Putting all this together, we have a commutative diagram

(264)

C
• (C) RHomD(Cop⊗kC) (C,C)

C
• (C,M,D) RHomD(Cop⊗kD) (M,M ) RHomD(Cop⊗kC) (C,RHomD(D) (M,M ))

�

γ λ∗

� �

and henceγ is a quasi-isomorphism of cochain complexes if and only if λ is an isomorphism inD(Cop⊗kC).

Describing the Hochschild cohomology of the gluing The following proposition is a straight-

forward check using the de�nition of the mapping cylinder, and the de�nitions of the objects which are

involved, in particular, that G(x ,y) = 0 for x ∈ Obj(C) and y ∈ D).

Proposition 190. C• (G) is the mapping cylinder of

(265)

(
γ
δ

)
: C
• (C) ⊕ C

• (D) → C
• (C,M,D).

For the statement of its corollary, we recall that in a triangulated category we call a commutative square

(266)

U V

W Z

a homotopy bicartesian square if there exists a morphism Z → U [1] such that the induced triangle

(267) U → V ⊕W → Z →

is distinguished.

Corollary 191. The square

(268)

C
• (G) C

• (C)

C
• (D) C

• (C,M,D)

i∗
C

i∗
D

γ

δ

is homotopy bicartesian.
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Proof. It su�ces to de�ne the triangle using the mapping cylinder discussed above. �

From this we get the following, relating the Hochschild cohomologies of G, C and D with the extensions

of the gluing bimodule.

Corollary 192. We have a long exact sequence

(269) . . . → HH
n (G) → HH

n (C) ⊕ HH
n (D) → HomD(Cop⊗kD) (M,M[n]) → . . . .

This is a vast generalisation of the long exact sequence of [19], where C = A was a �nite-dimensional

algebra, D = k the base �eld, and M a gluing module. This situation is called a one-point extension.

Now, this is still not quite the situation that we are interested in: we wanted to relate the Hochschild

cohomologies of C and D. But we have now proven the following chain of equivalences.

(270)

we want: i∗
D

a quasi-isomorphism

γ a quasi-isomorphism

λ an isomorphism

we say: − ⊗L
C
M : Perf C→ D(D) fully faithful

So imposing the fully faithfulness condition for the bimodule M , we can try to study the functoriality

properties of the morphism φM de�ned above. This is what we will do in the next section.

8.3 Limited functoriality

We have constructed a morphism φM : C
• (D) → C

• (C) of B∞-algebras, under suitable conditions on M .

In this section we discuss some of its properties. They are summarised in the following theorem [30,

theorem 4.6].

Theorem 193. Let M be a dg C-D-bimodule, such that − ⊗L
C
M : Perf C→ D(D) is fully faithful. Then

have that φM satis�es the following:

independence the morphism φM only depends on the isomorphism class in D(Cop ⊗k D), i.e. if M ′ is

a quasi-isomorphic bimodule, then φM = φM ′ ;

invertibility if additionally M ⊗L
D
− : Perf Dop → D(Cop) is fully faithful, then φM is an isomorphism

in Ho(B∞);

agreement with restriction if M = DF for a fully faithful dg functor F : C→ D, then φM = F ∗;

composition if N is a D-E-bimodule such that

1. − ⊗L
D
N : Perf D→ D(E) is fully faithful;

2. − ⊗L
C
(M ⊗L

D
N ) : Perf C→ D(E) is fully faithful

then

(271) φM ⊗L
D
N = φM ◦ φN

70



in Ho(B∞).

Before we discuss the proofs of these statements, let us give a useful corollary of the invertibility, which

in particular says that Hochschild cohomology is a derived Morita invariant of dg categories. First we

state the following lemma.

Lemma 194. If − ⊗L
C
M : D(C) → D(D) is an equivalence of triangulated categories, then the functors

(272) − ⊗LC M : Perf C→ D(D)

and

(273) M ⊗LD − : Perf D
op → D(C)

are invertible.

The proof is not very exciting, and uses only standard methods for dg modules.

Combining this with the invertibility of theorem 193, we obtain the following corollary.

Corollary 195. If − ⊗L
C
M : D(C) → D(D) is an equivalence of triangulated categories, then

(274) C
• (C) � C

• (D)

as B∞-algebras.

In other words, Hochschild cohomology is a derived Morita invariant. This is the case for most reasonable

invariants for dg categories.

The proofs of the di�erent parts of theorem 193

Proof of invertibility. It su�ces to observe that under the conditions of the theorem, we obtain that i∗
C

is also a quasi-isomorphism, using δ instead of γ and replacing the left action morphism in the analysis

of section 8.2. �

Next we consider the composition.

Proof of composition. Consider the following diagram of fully faithful dg functors.

(275)

(
C P
0 E

)
E

*..
,

C M P
0 D N
0 0 E

+//
-

(
D N
0 E

)

C

(
C M
0 D

)
D

The dg category in the middle is the obvious generalisation of the gluing interpreted as an upper

triangular matrix.
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Applying C
•

to it we obtain

(276)

C
•

(
C P
0 E

)
C
• (E)

C
•
*..
,

C M P
0 D N
0 0 E

+//
-

C
•

(
D N
0 E

)

C
• (C) C

•

(
C M
0 D

)
C
• (D)

�

?

�

�

where the isomorphisms are indicated. The left-hand side of (271) is given by inverting the top isomor-

phism, the right-hand side inverts the other two isomorphisms. If the morphism labelled by a question

mark is an isomorphism, then we can invert it, and we can conclude by commutativity of the resulting

diagram.

But we can interpret the morphism labelled by a question mark in terms of a gluing
7

too: we glue C

and

(
D N
0 E

)
along the bimodule Q given by

(277)

Q (y,x ) B M (y,x )

Q (z,x ) B P (z,x )

for x ∈ Obj(C), y ∈ Obj(D) and z ∈ Obj(E). But as

(278) − ⊗LC Q : Perf C→ D
(
D N
0 E

)
equals the composition

(279) Perf C D(D) D
(
D N
0 E

)
−⊗L

C
M iD,∗

we can conclude. �

For the other proofs one is referred to [30] for the time being.

8.4 Applications

Derived Morita invariance One of the motivations to study limited functoriality was to generalise

the Morita invariance from corollary 16. In the setting of derived categories it is known that if A and B
are k-algebras, such that D(A) ' D(B), then there exists a so-called tilting bimodule M which induces a

(possibly di�erent, so-called standard) equivalence

(280) − ⊗LA M : D(A)
'
→ D(B).

7
Not visible in the picture.
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As discussed in [52] this allows one to prove that there exists an isomorphism HH
• (A) � HH

• (B) of

graded algebras. The compatibility with the Gerstenhaber product on both sides was then shown in

[32] using derived Picard groups, still on the level of cohomology.

Limited functoriality allows us to lift this to an isomorphism C
• (B) → C

• (A) in Ho(B∞). To apply it we

need to check the following proposition, whose (not very di�cult) proof we’ll omit for now.

Proposition 196. Let M be a C-D-bimodule such that − ⊗L
C
M : D(C) → D(D) is an equivalence. Then

1. − ⊗L
C
M : Perf C→ D(D), and

2. M ⊗L
D
− : Perf Dop → D(Cop)

are both fully faithful.

Corollary 197 (Derived Morita invariance). LetM be a C-D-bimodule such that−⊗L
C
M : D(C) → D(D)

is an equivalence. Then

(281) φM : C
• (D) → C

• (C)

is an isomorphism in Ho(B∞).

This is a very useful result, as it allows one to choose convenient representatives when computing

Hochschild cohomology.

Example 198. Consider P1k . It is well-known that Db (P1k ) ' Db (kK2), where K2 is the Kronecker quiver

with 2 arrows. We could try to compute the Hochschild cohomology of a dg enhancement for Db (P1k ),
but now we can just compute the Hochschild cohomology of a �nite-dimensional algebra, which is much

easier. Of course, once we have proven the Hochschild–Kostant–Rosenberg decomposition computing

the Hochschild cohomology of P1k becomes just as easy, but it is not always possible to apply the

Hochschild–Kostant–Rosenberg decomposition when working with noncommutative objects.

Koszul duality The original motivation for the development of limited functoriality of Hochschild

cohomology was for Koszul duality. For more information one is referred to [30].

Open immersions Let X be a quasicompact separated k-scheme. Let j : U ↪→ X be an open sub-

scheme. Because j is �at we have that Lj∗ = j∗, and by [26] its right adjoint Rj∗ is fully faithful.

As discussed before we will use the dg enhancement of D(QcohX ) given by the full subcategory of

homotopy-injective complexes of quasicoherent sheaves inside the dg category Chdg (QcohX ). We want

to produce a functor between the enhancements associated to X and U , and the following lemma does

this.

Lemma 199. The functor j∗ : Ch(QcohU ) → Ch(QcohX ) preserves homotopy-injective cochain com-

plexes.

Proof. Let I• be a homotopy-injective complex in Ch(QcohU ), and N• an acyclic cochain complex.

Then

(282) HomK(QcohU ) (N
•, j∗I

•) � HomK(QcohX ) (j
∗N•, I•) � 0

as j∗N is still acyclic by the �atness of j. �

Hence we obtain a well-de�ned dg functor j∗ : hInj QcohU → hInj QcohX .
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Proposition 200. The dg functor j∗ is quasi-fully faithful.

Proof. This follows from H
0 (j∗) � Rj∗ being fully faithful, and the dg categories being pretriangulated.

�

Now we have the following general result.

Proposition 201. Let F : C → D be a quasi-fully faithful functor. Then − ⊗L
C
DF : Perf C → D(D) is

fully faithful.

Proof. The functor − ⊗L
C
DF induces the morphism

(283) Perf C(hx , hy ) → D(D) (hF (x ), hF (y ) )

which is a quasi-isomorphism by the quasi-fully faithfulness. As Perf C is the thick closure of the

representables, this proves the assertion. �

In particular we see that − ⊗L
C
DF even lands in Perf D.

Summing up we have proven the following, where we denote C
• (X ) B C

• (hInj QcohX ).

Theorem 202. There exists a restriction morphism C
• (X ) → C

• (U ) in Ho(B∞).

This result is a variation on [42, §7.6].

Semi-orthogonal decompositions We will introduce semi-orthogonal decompositions in the next

chapter, and prove functoriality for them in the special case of a fully faithful functor between derived

categories of varieties.
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Chapter III

Varieties

Conventions We will continue with our convention that k is a �eld, and let’s assume immediately

that it is of characteristic 0 and algebraically closed.

9 Fourier–Mukai transforms

We will need to know a few things about Fourier–Mukai transforms. The canonical reference for this is

[24]. We will give a brief summary of some of the required results, with some proofs to get a �avour for

the formalism.

Throughout we will let X ,Y (and variations upon these) be smooth projective varieties.

9.1 Preliminaries

In this section we �rst collect some formulae which are useful when computing with derived categories

of smooth projective varieties. They are given without proof.

The projection formula Let f : X → Y be a morphism. Let E ∈ Db (X ) and F ∈ Db (Y ). Then the

projection formula is the isomorphism

(284) Rf∗ (E) ⊗L F � Rf∗
(
E ⊗L Lf ∗ (F)

)
.

The derived dual Let E be an object of Db (X ). Then E∨ B RHom(E,OX ) is the derived dual. We

have an isomorphism

(285) RHom(E ⊗L F,G) � RHom(E,F∨ ⊗L G)

which induces some other isomorphisms that will be used implicitly.

Serre functors The notion of a Serre functor encodes Serre duality for smooth projective varieties

on a categorical level [6, §3]. As such it can be generalised to other settings (e.g. �nite-dimensional

algebras of �nite global dimension), but we will not need this in this chapter.
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De�nition 203. Let T be a Hom-�nite triangulated category. An additive functor S : T → T is a Serre
functor is for all x ,y ∈ Obj(T) there exists an isomorphism

(286) ηx,y : HomT (x ,y)
�
→ HomT (y,S(x ))

∨.

Such a functor is automatically exact [6, proposition 3.3], and unique up to unique isomorphism [6,

proposition 3.4(b)].

The main (and for now only) example of this is the Serre functor given by Serre duality, whereS = −⊗ωX [dimX ].

Consider the form of Serre duality as [20, §III.7], where we have an isomorphism

(287) Ext
i
X (F,ωX ) � H

n−i (X ,F)∨

for F a coherent sheaf, and i ≥ 0. In the setting of Db (X ) we reinterpret this as a special case of the

Serre functor as follows:

(288)

Ext
i
X (F,ωX ) H

n−i (X ,F)∨

Ext
n−i
X (OX ,F)

∨

HomDb (X ) (F,ωX [i]) HomDb (X ) (OX ,F[n − i])
∨

�

�

�

�

ηOX ,F[n−i]

9.2 Fourier–Mukai functors

Let X and Y be smooth projective varieties. We will use the following notation throughout:

(289)

X × Y

X Y

p q

When more varieties are involved, we will again specify the di�erent projections.

With this notation in use, we can associate an exact functor to every object in the derived category of

the product as follows.

De�nition 204. Let P ∈ Db (X × Y ). The Fourier–Mukai transform with kernel P is the functor

(290) ΦP = ΦX→Y
P : Db (X ) → Db (Y )

given by

(291) ΦP (E) B Rq∗
(
p∗ (E) ⊗L P

)
.

As before, we will not distinguish systematically between a coherent sheaf and a bounded complex of

coherent sheaves. But we will be careful when it concerns derived functors: if a functor needs to be

derived, we will indicate so. In particular, in the formula de�ning a Fourier–Mukai transform we do not

have to derive the pullback, as p is automatically �at.

It is also important to note that all the functors involved are automatically exact, and more importantly,

preserve both boundedness and coherence.

Finally, we will usually omit the superscript X → Y , unless confusion is possible. The Fourier–Mukai

functor in the opposite direction ΦY→X
P

is de�ned by exchanging the roles of p and q.
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Examples We will brie�y discuss some examples of Fourier–Mukai transforms. The �rst is an ex-

tremely important one in the study of Hochschild (co)homology.

Example 205 (The identity functor). Let P B ∆∗OX , where ∆ : X → X × X . Then

(292) idDb (X ) � Φ∆∗OX .

This follows from the projection formula,

(293)

Φ∆∗OX (E) � Rq∗
(
p∗E ⊗L ∆∗OX

)
� Rq∗ ◦ ∆∗ (L∆∗ ◦ p∗E ⊗L OX )

� R(q ◦ ∆)∗ ◦ L(p ◦ ∆)∗ (E)
� E.

The next three types of examples are (amongst other reasons) important in the study of auto-equivalences

of a derived category,

Example 206 (Shift). Let P B ∆∗OX [i]. Then

(294) [i] � Φ∆∗OX [i],

as in the previous example.

Example 207 (Twist by a line bundle). Let P B ∆∗L, where L is a line bundle on X . Then

(295) − ⊗ L � Φ∆∗L,

as in the �rst example.

The example of interest in the study of Hochschild (co)homology is the combination of twist by the

canonical line bundle ωX and the shift by [dimX ]. In that case we have that

(296) S � Φ∆∗ωX [dimX ].

Example 208 (Direct and inverse image). Let f : X → Y be a morphism. Then we have a closed subva-

riety Γf ⊆ X × Y , the graph of f . Its structure sheaf is direct image of OX under the morphism idX ×f .

Again using the projection formula one can show that

(297) Rf∗ � ΦOΓf
.

If we reverse the role of the projections p and q, then

(298) Lf ∗ � ΦY→X
OΓf
.

Of course, one can use any object Db (X × Y ) and use it as the kernel for a Fourier–Mukai transform.

But usually there aren’t many interesting well-understood objects available to do this. One interesting

case is that of a �ne moduli space. This type of examples is important, and historically these were the

motivation to study Fourier–Mukai transforms for abelian varieties, and K3 surfaces, and why they are

named after Mukai [45, 46]

Example 209 (Universal objects). Let M be a �ne moduli space of sheaves on X , as studied in [25].

In such a setting ther exists a universal object U ∈ cohX × M , and we can consider the associated

Fourier–Mukai transform ΦU. Important examples of this are the following.
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1. A an abelian variety, and A∨ the dual abelian variety
1

parametrising line bundles of degree 0.

Then we have the universal Poincaré line bundle P, whose associated Fourier–Mukai functor gives

rise to an equivalence Db (A) � Db (A∨), see [45];

2. S a K3 surface, and M a moduli space of stable sheaves on S which is assumed to be smooth

projective of dimension 2, then the Fourier–Mukai functor sets up an equivalenceDb (S ) → Db (M ),
even if M and S are not necessarily isomorphic;

3. S a smooth projective surface, and Hilb
n S the Hilbert scheme of n points. Then we have the

universal ideal sheaf, whose associated Fourier–Mukai functor is fully faithful provided that OS is

exceptional [36], i.e. H
1 (S,OS ) = H

2 (S,OS ) = 0.

4. C a smooth projective curve of genus д ≥ 2, and MC (r ,L) the moduli space of rank r vector

bundles with determinant L of coprime degree. Then we have the the universal Poincaré vector
bundle W, whos associated Fourier–Mukai functor is fully faithful [47, 13, 5] (modulo some

technical assumptions).

9.3 Basic properties of Fourier–Mukai functors

We will now prove some basic results about Fourier–Mukai transforms. These will explain how it is

useful to know that an exact functor is of Fourier–Mukai type.

Grothendieck duality One technical result we will need is that of Grothendieck duality, which is a

generalisation of Serre duality. Luckily we only need a very small aspect of this vast machinery, as we

have restricted ourselves to the nice setting where all morphisms are necessarily proper.

If f : X → Y is a morphism, then we have a triple of adjoints

(299) Lf ∗ a Rf∗ a f !

where f ! is pronounced f upper shriek. More correctly, the right adjoint to Rf∗ is denoted f ×, whilst f !

is a functor with a speci�c description in di�erent cases, but when f is proper (as it always is in our

setting) then f × � f !.

Actually, we don’t just have a triple: it turns out that Lf ∗ itself has a left adjoint, and f ! has a right

adjoint, and then those themselves have a left adjoint and a right adjoint. In our setting this will become

clear after we have discussed the adjoints of a Fourier–Mukai transform, in a more general setting one

can consult [3].

The main fact we need about the right adjoint f ! is that in this particular setting it can be described as

(300) f ! � Lf ∗ (−) ⊗ ωf [dim f ]

where

(301) ωf B ωX ⊗ f ∗ (ωY )
∨

and dim f B dimX − dimY .

1
In general we have that A and A∨ are not isomorphic.
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Example 210 (Serre duality). To recover Serre duality from Grothendieck duality, we consider the

morphism f : X → Speck . Then RΓ � Rf∗, so we obtain for a coherent sheaf E

(302)

HomDb (X ) (E[n − i], f
! (OSpeck )) HomDb (Speck ) (Rf∗E[n − i],OSpeck )

Ext
i
X (E,ωX ) H

n−i (X ,F)∨

�

�

�

�

as f ! (OSpeck ) � ωX [n].

Remark 211. There is a strong relationship between Grothendieck duality and Hochschild (co)homology,

which was �rst expressed by Lipman in [38]. But much more recently Neeman has written the following

[48, page 43] concerning this relationship.

The computations will involve Hochschild homology and cohomology—terms like S⊗S eRHomR (S, S⊗RN )
are bound to appear. Fortunately the world is full of experts in Hochschild homology and

cohomology
2
, and once they take an interest they will undoubtedly be able to move these

computations much further than the handful of us, the few people who have been working

on Grothendieck duality. Let’s face it: in our tiny group none is adept at handling the

Hochschild machinery. The Hochschild experts should feel invited to move right in.

Adjoints Important in the study of Fourier–Mukai transforms is that the left and right adjoints of

a Fourier–Mukai transform are again Fourier–Mukai, i.e. the left and right adjoints which exist by

Bondal–Van den Bergh can be described using a Fourier–Mukai kernel.

Proposition 212. Let P ∈ Db (X × Y ). De�ne

(303)

PL B P∨ ⊗ q∗ωY [dimY ],

PR B P∨ ⊗ p∗ωX [dimX ].

Then

(304) ΦPL
a ΦP a ΦPR

.

Proof. We prove that PL is the kernel for the left adjoint of the Fourier–Mukai transform ΦP, the proof

for the right adjoint is dual. Observe that we mean ΦPL
= ΦY→X

PL

here.

Let E ∈ Db (X ) and F ∈ Db (Y ). Then

(305)

HomX (ΦPL
(F,E) � HomX

(
Rp∗ (PL ⊗

L q∗F),E
)

� HomX×Y
(
PL ⊗ q

∗F,p!E)
)

� HomX×Y (P
∨ ⊗ q∗ωY [dimY ] ⊗L q∗F,p∗E ⊗ ωX×Y ⊗ p

∗ω∨X [dimY ])

� HomX×Y (P
∨ ⊗L q∗F,p∗E)

� HomX×Y (q
∗F,P ⊗L p∗E)

� HomY (F,Rq∗ (p∗E ⊗L P))
� HomY (F,ΦP (E))

where we have used that ωX×Y � p∗ωX ⊗ q
∗ωY in the description of p!. So ΦPL

is indeed the left adjoint

of ΦP. �
2
I presume he is addressing the readers of these notes. Although the author of these notes has to admit that the topics

discussed here do not necessarily prepare you very well for the task he is describing.
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Composition One can also prove that the composition of Fourier–Mukai functors is again Fourier–

Mukai. We will not prove this result, as the proof is elementary (no need for Grothendieck duality for

instance), but requires much more motation.

Proposition 213. Let P ∈ Db (X × Y ) and Q in Db (Y × Z ). If we denote

(306)

X × Y × Z

X × Y X × Z Y × Z

p1,2 p1,3
p2,3

and de�ne

(307) R B Rp1,3,∗
(
p∗
1,2P ⊗

L p∗
2,3Q

)
then

(308) ΦX→Z
R � ΦQ ◦ ΦP.

Remark 214. In particular we see that f ! is again a Fourier–Mukai functor, as it is the composition

of Lf ∗ and − ⊗ ωf [dim f ]. Hence we can extend the sequence Lf ∗ a Rf∗ a f ! inde�nitely to the left

and right.

Which functors are Fourier–Mukai? An important question is the one raised in the title of this

paragraph. We now know that Fourier–Mukai functors can be used to describe exact functors be-

tween Db (X ) and Db (Y ), and that such a description has extremely useful applications when it comes

to understanding the composition or adjoints of such functors. We have also described some obvious

Fourier–Mukai functors, but how general are they? The main result in this direction is the following.

Theorem 215 (Orlov). Let F : Db (X ) → Db (Y ) be a fully faithful exact functor. Then there exists an

object P ∈ Obj(Db (X × Y )) which is unique up to isomorphism, such that F � ΦP.

Of course, many of the Fourier–Mukai functors we have described earlier are not fully faithful.

Remark 216. In particular, equivalences are always given as a Fourier–Mukai functor. Observe that the

same question for (�nite-dimensional) algebras was studied earlier by Rickard [52], but in that setting

it is still unknown whether every derived equivalence is given by tensoring with a bimodule (which

we used when discussing Morita equivalences in the abelian setting). Rickard shows that if there is a

derived equivalence, there is a possibly di�erent derived equivalence of Morita type.

The following result was an important and recent breakthrough in the study of Fourier–Mukai trans-

forms. It says that not every exact functor from Db (X ) to Db (Y ) is of Fourier–Mukai type [54].

Theorem 217 (Rizzardo–Van den Bergh). There exist exact functors which are not of Fourier–Mukai

type.

In particular, they gave an example in the following setting.

Example 218. Let X be a smooth quadric hypersurface in Y = P4. Then there exists an exact functor

between Db (X ) and Db (Y ) which is not of Fourier–Mukai type.

The construction is complicated, and involves Hochschild cohomology and deformation theory in

an essential way: the goal is to take the inclusion morphism i : X ↪→ Y and modify the associated

Fourier–Mukai functor using a deformation of the derived category of X to a functor which can be

shown not to be of Fourier–Mukai type. Unfortunately a discussion of this is out of scope.

All of these issues disappear when using dg enhancements, by an important result of Toën [62, theorem

8.15].
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Theorem 219 (Toën). There exists an isomorphism

(309) RHom(Db

dg
(X ),Db

dg
(Y )) � Db

dg
(X × Y )

in the category of dg categories localised at quasi-equivalences, where RHom denotes the internal Hom

in this category.

So every dg functor is of Fourier–Mukai type, and the example of Rizzard–Van den Bergh cannot be

described using a dg functor.

When studying Hochschild (co)homology of varieties, there are two possibilities:

1. use Fourier–Mukai transforms;

2. work with dg enhancements throughout.

Both have their merits and downsides. We will take the aproach using Fourier–Mukai transforms.
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10 Hochschild (co)homology for varieties

There is no unique road to Hochschild (co)homology of schemes. Each has its bene�ts and peculiarities.

In these notes we focus on the de�nition using derived categories, in the spirit of Fourier–Mukai

transforms. Eventually these notes should be extended with a somewhat detailed discussion of the

alternative de�nitions and their comparisons.

10.1 Using Fourier–Mukai transforms

Using derived categories we will two di�erent de�nitions of the Hochschild (co)homology of X . One is

directly on the level of cohomology, the other gives an intermediate object living in Db (X ). As we will

show in proposition 223 the hypercohomology of the latter gives the former.

The �rst de�nition we discuss is the one found in [37], although at least for Hochschild cohomology it

goes back to Kontsevich [35, page 131].

De�nition 220 (Kuznetsov). We de�ne the Hochschild (co)homology of X as

(310)

HH
i (X ) B Ext

i
X×X (∆∗OX ,∆∗OX ),

HHi (X ) B Ext
dimX+i
X×X (∆∗OX ,∆∗ωX ).

The de�nition for Hochschild cohomology is clear, we are considering the self-extensions of the identity

functor. But the de�nition for Hochschild homology might seem strange at �rst sight
3
: there is no

reference to Tor of the identity functor, and the grading shift might look a bit confusing. We will come

back to these issues when we compare this de�nition to the second de�nition.

As before we can equip Hochschild cohomology with a graded algebra structure using Yoneda Ext’s,

and the action on Hochschild homology follows immediately.

Observe that we also have the following proposition.

Proposition 221. Let X be smooth projective. Then HH
i (X ) = 0 for i < [0, 2 dimX ] and HHi (X ) = 0

for i < [− dimX , dimX ]. Moreover,

(311) dimk *
,

2 dimX⊕
i=0

HH
i (X )+

-
< +∞ dimk *

,

dimX⊕
i=− dimX

HHi (X )+
-
< +∞.

The �nite-dimensionality is in fact true for the Hochschild cohomology of an arbitrary smooth and

proper dg category
4
. But it is possible that the Hochschild cohomology of a smooth and proper dg

category is non-zero in negative degrees, an example can be found in exercise 180.

It is clear that the de�nition of Hochschild cohomology is a closely related to that of an algebra or a

dg category, as we considering extensions of the identity functor. This is not just a convenient analogy,

as it can be shown that the (dg) category Db (X ×Y ) of kernels for Fourier–Mukai functors is equivalent

to the (dg) category of dg functors from Db (X ) to Db (Y ), as explained in theorem 219.

The second de�nition we discuss is the one found in [43], due to Markarian. In this case the relation to

theorem 15 is much more obvious.

3
And it is.

4
But not having de�ned those notions, nor Hochschild homology for dg categories, we leave this as an exercise for the

interested reader, willing to look up things themself.
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De�nition 222 (Markarian). We de�ne the Hochschild (co)chain complex of X as

(312)

U B Rp∗ (RHomX×X (∆∗OX ,∆∗OX )),

F B Rp∗ (∆∗OX ⊗
L ∆∗OX ).

These are objects in Db (X ). The careful reader could �nd this remarkable, as the Hochschild (co)chain

complex of an algebra was de�ned to be an object in Ch(k ). But for a commutative algebra we showed

that HH
0 (A) � A, and that everything is a module over HH

0 (A). So this is the suitable generalisation of

this, where the Hochschild (co)chain complex is an object in Db (X ).

We will use this de�nition in section 11 to prove the Hochschild–Kostant–Rosenberg decomposition.

For now, let us prove that we recover the cohomological de�nition (up to Serre duality
5
).

Proposition 223. We have that

1. HH
i (X ) � H

i (RΓ(X ,U));

2. HHi (X ) � H
−i (RΓ(X ,F))∨.

The reason for the change in indexing is that Hochschild homology has homological grading, but we’ve

de�ned U with cohomological grading.

Proof. The proof for Hochschild cohomology is immediate from standard properties of derived functors.

The proof for Hochschild homology uses the isomorphism

(313) ∆∗ ◦ L∆∗ ◦ ∆∗ (OX ) � ∆∗OX ⊗
L ∆∗OX

which follows from the projection formula. We have that

(314)

Ext
dimX+i
X×X (∆∗OX ,∆∗ωX ) � HomDb (X×X ) (∆∗OX ,∆∗ωX [dimX + i])

� HomDb (X ) (L∆
∗ ◦ ∆∗OX [−i],ωX [dimX ])

� HomDb (X ) (OX , L∆∗ ◦ ∆∗OX [−i])
∨

� H
−i (RΓ(X ,F))∨

by Serre duality, where the last equality uses the standard fact that OX � L∆∗OX×X . �

Remark 224. In [8, 7] Hochschild homology is de�ned as

(315) HHi (X ) B HomDb (X×X ) (∆!OX [i],∆∗OX ).

The functor ∆! is the left adjoint of L∆∗, so we have an expression for it thanks to proposition 212.

Hence we have an isomorphism

(316)

HomDb (X×X ) (∆!OX [i],∆∗OX ) � HomDb (X ) (OX , L∆∗ ◦ ∆∗OX [−i])

� H
−i (RΓ(X ,F))

using (313).

5
Let me know if I made a silly mistake here. At least for now we won’t be dependent on whether the isomorphism is as

stated.
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10.2 Limited functoriality for Hochschild cohomology

10.3 Shea��cation

For now one is referred to [66, 58].

10.4 Gerstenhaber–Schack

For now one is referred to [15]. Observe that they only study Hochschild cohomology.

10.5 Comparisons

The interested reader can �nd various comparisons in the cited references.
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11 The Hochschild–Kostant–Rosenberg decomposition

The goal of this section is to generalise the Hochschild–Kostant–Rosenberg isomorphism from theo-

rem 98 to a non-a�ne setting, and in particular discuss it for smooth and projective varieties. When X
is no longer a�ne, the isomorphism becomes a decomposition.

11.1 Harmonic structure: polyvector �elds and di�erential forms

11.2 Atiyah classes

11.3 Hochschild–Kostant–Rosenberg decomposition

11.4 Examples and further remarks

Hodge diamonds and polyvector parallelograms In class we discussed how the dimensions of

the components in the Hochschild–Kostant–Rosenberg decomposition for HH• (X ) (resp. HH
• (X )) can

be organised into the Hodge diamond (resp. polyvector parallelogram). The �rst is a well-known object,

whereas the latter is terminology the author of these notes made up for the sake of this course.

For lack of time
6

I won’t reproduce the pictures I made. Just remember that we discussed how derived

categories and these numerical data can be used for

1. homological mirror symmetry;

2. semi-orthogonal decompositions;

3. deformation correspondences.

Below I give some remarks that �t nicely within the discussion in class, but which were not given in

class.

Interpretation of HH1 (X ) The components in the decomposition of HH
1 (X ) are the tangent spaces

to the identity component of the automorphism group of X (resp. the degree zero component of

the Picard scheme of X ). As Hochschild cohomology is a derived invariant, any derived equivalence

identi�es the direct sum of these tangent spaces, (but there might be some interchanging happening, see

also example 226). Moreover Rouquier has shown [55, théorème 4.18] that not only the tangent spaces

can be identi�ed: the semidirect product of the identity components is actually a derived invariant,

which is much stronger.

Theorem 225 (Rouquier). An equivalence Φ : Db (X ) → Db (Y ) induces an isomorphism of algebraic

groups

(317) Aut
0 (X ) × Pic0 (X ) → Aut

0 (Y ) × Pic0 (Y ).

Example 226. In the case of abelian varieties A and B the statement of Rouquier’s theorem reduces to

that of Orlov’s theorem for derived equivalent varieties [50, p. 2.19], namely that if A and B are derived

equivalent abelian varieties, then A × Â � B × B̂. In this case the derived equivalence exchanges the

components H
0 (A,TA) (resp. H

1 (A,OA)) and H
1 (B,OB ) (resp. H

0 (B,TB )).

6
And a desire to make the pictures in print look as nice as they did on the blackboard.
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In [51, corollary B] it is moreover shown that not just dimk HH
1 (X ) is a derived invariant, but so are

the dimensions h
0 (X ,TX ) and h

1 (X ,OX ) of its Hochschild–Kostant–Rosenberg components. In the

next paragraph we come back to this statement for Hochschild homology.

Remark 227. One should at this point mention that determining the auto-equivalence group of Db (X )
is an interesting topic, and that Rouquier’s isomorphism tells us how standard auto-equivalences �t

into this picture, but as we haven’t formally introduced these, we will just remark that the interested

reader is invited to piece together a coherent story.

Derived invariance of Hodge numbers If Db (X ) � Db (Y ) we have that HHi (X ) � HHi (Y ). In

particular we get that

(318)

∑
q−p=i

h
p,q (X ) =

∑
q−p=i

h
p,q (Y ).

But Kontsevich has conjectured that a derived equivalence actually implies equality of Hodge numbers,

not just the sums of the columns in the Hodge diamond. When dimX = 1 this is trivial, when dimX = 2

this is an easy exercise, see exercise 228. When dimX = 3 this is the main result of [51].

In general, it is not even known whether h
0,i

is a derived invariant. These cohomology groups also

appear in the Hochschild–Kostant–Rosenberg decomposition for HH
• (X ), and the cohomology of OX

forms a subalgebra of HH
• (X ) called the homological units of X . It is conjectured that this subalgebra is

a derived invariant [1].

11.5 Exercises

Exercise 228. Show that if dimX = 2 that Db (X ) � Db (Y ) implies that h
p,q (X ) = h

p,q (Y ). One has to

use that dimX = dimY , by [24, proposition 4.1].
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12 Riemann–Roch versus Hochschild homology
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13 Căldăraru’s conjecture
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Appendix A

Preliminaries

1 Di�erential graded (Lie) algebras

De�nition 229. A di�erential graded algebra A• is a graded algebra A• together with the structure of a

cochain complex d: A• → A•+1 satisfying the graded Leibniz rule, i.e. for all homogeneous a,b ∈ A•

(319) d(ab) = d(a)b + (−1) |a |a d(b).

We will abbreviate di�erential graded algebra to dg algebra.

Observe that the graded Leibniz rule implies the following.

Proposition 230. Let A• be a dg algebra. Then H
• (A•) is a graded algebra.

De�nition 231. A di�erential graded Lie algebra L• is a graded Lie algebra together with the structure

of a cochain complex d: L• → L•+1 satisfying the graded Leibniz rule, i.e. for all homogeneous l ,m ∈ L•

(320) d([l ,m]) = [d(l ),m] + (−1) |l |[l , d(m)].

We will abbreviate di�erential graded Lie algebra to dg Lie algebra, or even dgla.

Remark 232. For graded algebras the axioms do not pick up any signs. For graded Lie algebras there

are non-trivial signs involved in the axioms: for all homogeneous l ,m ∈ L• the graded skew-symmetry

is

(321) [l ,m] = (−1) |l | |m |[m, l]

whilst the graded Jacobi identity is

(322) [l , [m,n]] = [[l ,m],n] + (−1) |l | |m |[m, [l ,n]].

Observe that the graded Leibniz rule implies the following.

Proposition 233. Let L• be a dg Lie algebra. Then H
• (L•) is a graded Lie algebra.
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1.1 Exercises

Exercise 234. Let L• be a dg Lie algebra, and R a (not necessarily unital) commutative k-algebra.

Then L• ⊗k R is again a dg Lie algebra, when equipped with the natural structure

1. (L• ⊗k R)
i = Li ⊗k R;

2. dL•⊗kR = dL• ⊗k idR ;

3. [l1 ⊗ r1, l2 ⊗ r2] = [l1, l2] ⊗ r1r2.

This works similarly for −⊗̂k−.
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2 Completion and topologies

The Artin–Rees lemma can be used to show the following.

Lemma 235. Let V be a �nite-dimensional vector space. Then

(323) R⊗̂kV � R ⊗k V

as R-modules.

We have the following universal property.

Proposition 236. Let U ,V be vector spaces. Let R be a complete augmented k-algebra. There exists an

isomorphism

(324) Homk (U ,R⊗̂kV ) � Hom
cont

R (R⊗̂kU ,R⊗̂kV ).

The multiplication on R⊗̂kA is continuous and R-bilinear. This means it is given as a morphism

(325) (R⊗̂kA)⊗̂R (R⊗̂kA) → R⊗̂kA

where −⊗̂R− denotes the completed tensor product of complete R-modules (see [60, tag 0AMU]).

One of the properties of the completed tensor product that we will need is the following.

Lemma 237. Let U ,V be vector spaces. Let R be a complete augmented k-algebra. Then

(326) (R⊗̂kU )⊗̂R (R⊗̂kV ) � R⊗̂k (U ⊗k V ).

Proposition 238. Let R be a complete augmented k-algebra. Let (R⊗̂kA, µ ) be a formal deformation

of A over R. Then the multiplication is determined completely by its values on

(327) A ⊗k A ⊆ R⊗̂k (A ⊗k A) � R⊗̂k (A ⊗k A).

This explains why the Cauchy product appeared in (165).

2.1 Exercises

Exercise 239. Is k[[x]] ⊗k k[[y]] � k[[x ,y]]? Is k[[x]]⊗̂kk[[y]] � k[[x ,y]]?

Using this, explain why continuity of a multiplication − ∗ − on A[[t]] does not follow automatically

from bilinearity, except when A is �nite-dimensional.
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3 Chevalley–Eilenberg cohomology
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