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Abstract

In this short note we explain how the semisimplicity obstruction by Galkin–Leung–Li–Xiong

shows that certain Kronecker quiver moduli have non-semisimple small quantum cohomology.

Quiver moduli are moduli spaces of (semi)stable representations of a quiver, and they admit many

strong results, see [10] for a survey. We will focus on the case where the quiver is the𝑚-Kronecker

quiver with𝑚 arrows:

(1) ...
,

wherewewill throughout assume that𝑚 ≥ 3.Wewill write (𝑑, 𝑒) for the dimension vector, where𝑑, 𝑒 ≥ 1.

We will assume that gcd(𝑑, 𝑒) = 1. As there are only 2 vertices, there is a unique non-trivial stability

function, for which stability coincides with semistability. We denote the moduli space of (semi)stable

representations of the𝑚-Kronecker quiver with dimension vector (𝑑, 𝑒) by M
𝑚
(𝑑,𝑒 ) .

The important properties for us are that

1. M
𝑚
(1,𝑒 ) � Gr(𝑒,𝑚) and M

𝑚
(𝑑,1) � Gr(𝑑,𝑚);

2. M
𝑚
(𝑑,𝑒 ) is Hodge–Tate [8, Theorem 3];

3. M
𝑚
(𝑑,𝑒 ) is a smooth projective rational Fano variety of dimension𝑚𝑑𝑒 − 𝑑2 − 𝑒2 + 1, Picard rank 1,

and index𝑚, see [5, Corollary 5.2].

In addition to generic semisimplicity of small quantum cohomology of Kronecker moduli which happen

to be Grassmannians, we have the following important result [9, Theorem 5.23], which follows from an

explicit presentation of the small quantum cohomology.

Proposition 1 (Meng). The small quantum cohomology QH(M3

(2,3) ) is generically semisimple.

Given that a version of Schofield’s conjecture predicts that the derived category of a quiver moduli

space (and thus M
𝑚
(𝑑,𝑒 ) in particular) admits a full exceptional collection [2], and Dubrovin’s conjecture

then predicts that its big quantum cohomology is generically semisimple, one might (optimistically)

wonder whether the small quantum cohomology is already semisimple, as is the case in all known

examples. However, the following shows that this is not the case.

Theorem 2. Assume that𝑚 ≥ 5 is odd. Then the small quantum cohomologyQH(M𝑚
(2,𝑚) ) is not generically

semisimple.
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We will obtain this as a consequence of [6, Theorem 1.2], and thus we can conclude that this result is

also strong enough to show that certain Kronecker moduli spaces have generically non-semisimple

small quantum cohomology, similar to the application in [6, Theorem 2.3] for exceptional generalized

Grassmannians.

Two lemmas Given a polynomial with integer coefficients

(2) 𝑃 (𝑞) =
𝑁∑︁
𝑖=0

𝑎𝑖𝑞
𝑖 ∈ Z[𝑞]

and an integer 𝑛 ≥ 1, we define

(3)
˜𝑏 𝑗 :=

∑︁
𝑘≡𝑗 mod 𝑛

𝑎𝑘

for 𝑗 ∈ Z/𝑛Z. Later on, the polynomial will be the even Poincaré polynomial of a smooth projective

variety, and the
˜𝑏 𝑗 will be the index-periodic even Betti numbers.

Lemma 3. Assume that ˜𝑏 𝑗 ≤ ˜𝑏 𝑗𝑘 for all 𝑗, 𝑘 ∈ Z/𝑛Z. Then 𝑃 (e2𝜋 i/𝑛) = ∑
𝑑 |𝑛 𝜇 (𝑛/𝑑) ˜𝑏𝑑 , in particular, it is

an integer.

Proof. By assumption we have that
˜𝑏 𝑗 = ˜𝑏 𝑗𝑘 if 𝑘 ∈ (Z/𝑛Z)× . The orbits of (Z/𝑛Z)× on Z/𝑛Z correspond

to the divisors of 𝑛, thus we can write

(4) 𝑃 (e2𝜋 i/𝑛) =
𝑛∑︁
𝑗=1

˜𝑏 𝑗e
2𝜋 i𝑗/𝑛 =

∑︁
𝑑 |𝑛

˜𝑏𝑑

∑︁
( 𝑗,𝑛)=𝑑

e
2𝜋 i𝑗/𝑛 =

∑︁
𝑑 |𝑛

˜𝑏𝑑

∑︁
( 𝑗,𝑛/𝑑 )=1

e
2𝜋 i𝑗/(𝑛/𝑑 ) =

∑︁
𝑑 |𝑛

𝜇 (𝑛/𝑑) ˜𝑏𝑑

where the last step uses standard properties of Ramanujam sums [7, Theorem 271], and the latter

expression is indeed an integer. □

We also recall the 𝑞-Lucas theorem on evaluations of Gaussian binomial coefficients

[
𝑎
𝑏

]
𝑞
at roots of

unity [4, Proposition 2.2].

Lemma 4. For 𝑎, 𝑏 ∈ N and 0 ≤ 𝑟, 𝑠 < 𝑛, we have

(5)

[
𝑎𝑛 + 𝑟

𝑏𝑛 + 𝑠

]
e
2𝜋 i/𝑛

=

(
𝑎

𝑏

)
·
[
𝑟

𝑠

]
e
2𝜋 i/𝑛

.

Poincaré polynomials of Kronecker moduli Now we consider the Kronecker moduli spaces M
𝑚
(2,𝑒 )

for 𝑒 odd and𝑚, 𝑒 ≥ 3. There is a duality

(6) M
𝑚
(2,𝑒 ) � M

𝑚
(2,2𝑚−𝑒 ) ,

(with both being empty when 𝑒 > 2𝑚) see, e.g., [1, Corollary 4.1], thus we can assume 𝑒 ≤𝑚.

Their Poincaré polynomials admit a closed expression using a resolved Harder-Narasimhan type

recursion [11, Section 7].

Lemma 5. Let 𝑒,𝑚 ≥ 3, and assume that 𝑒 ≤𝑚, and 𝑒 is odd. The Poincaré polynomial P𝑚(2,𝑒 ) (𝑞) of M
𝑚
(2,𝑒 )

is given by

(7) P
𝑚
(2,𝑒 ) (𝑞) =

1

𝑞(𝑞 − 1)

(
1

𝑞 + 1

[
2𝑚

𝑒

]
𝑞

−
(𝑒−1)/2∑︁
𝑘=0

𝑞 (𝑚−𝑒+𝑘 )𝑘
[
𝑚

𝑘

]
𝑞

[
𝑚

𝑒 − 𝑘

]
𝑞

)
.
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We can now derive the main observation.

Lemma 6. Let 𝑒,𝑚 ≥ 3, and assume that 𝑒 ≤𝑚, and 𝑒 is odd. Then P
𝑚
(2,𝑒 ) (e

2𝜋 i/𝑚) is strictly imaginary if
and only if 𝑒 =𝑚 ≥ 5.

Proof. If 𝑒 < 𝑚, then all Gaussian binomial coefficients in Lemma 5 evaluate to zero at 𝑞 = e
2𝜋 i/𝑚

by

Lemma 4, because we always have 𝑟 = 0 and 𝑠 = 𝑒 ≥ 1, and thus P
𝑚
(2,𝑒 ) (e

2𝜋 i/𝑚) = 0.

If 𝑒 =𝑚, we find

(8)

P
𝑚
(2,𝑚) (e

2𝜋 i/𝑚) = 1

e
2𝜋 i/𝑚 (e2𝜋 i/𝑚 − 1)

(
1

e
2𝜋 i/𝑚 + 1

· 2 − 1

)
= − 1

e
2𝜋 i/𝑚 (e2𝜋 i/𝑚 + 1)

,

as for 𝑘 = 0 in the summation in Lemma 5 we have

[
𝑚
0

]
e
2𝜋 i/𝑚 =

[
𝑚
𝑚

]
e
2𝜋 i/𝑚 = 1 by definition, whilst all

other Gaussian binomial coefficients in the sum evaluate to zero at 𝑞 = e
2𝜋 i/𝑚

by Lemma 4 because

for 𝑘 ≥ 1 we will have 𝑟 = 0 and 𝑠 ≥ 1, whereas

[
2𝑚
𝑚

]
e
2𝜋 i/𝑚 =

(
2

1

) [
0

0

]
e
2𝜋 i/𝑚 = 2 by another application of

Lemma 4. This is strictly imaginary for𝑚 ≥ 5. □

Proof of Theorem 2. By Lemma 6 we have that P
𝑚
(2,𝑚) (e

2𝜋 i/𝑚) is strictly imaginary (and thus nonzero).

By Lemma 3, this invalidates the criterion of [6, Theorem 1.2], and thus the small quantum cohomology

of M
𝑚
(2,𝑚) is not generically semisimple. □

Let us illustrate what happens in the smallest example, where𝑚 = 5.

Example 7. The Kronecker moduli space M
5

(2,5) is a 22-dimensional smooth projective Fano variety, of

index 5. Using the algorithm for Betti numbers of [11, Corollary 6.9], and implemented in [3], or by

working out the special case from Lemma 5, we obtain that the even Betti numbers are

(9) 1, 1, 3, 4, 8, 11, 17, 22, 30, 35, 41, 41, 41, 35, 30, 22, 17, 11, 8, 4, 3, 1, 1.

Hence, the index-periodic even Betti numbers
˜
b0, . . . , ˜b4 are

(10) 78, 77, 78, 77, 77.

We see that
˜
b2 > ˜

b4, hence by [6, Theorem 1.2] we obtain that QH(M5

(2,5) ) cannot be generically

semisimple.
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