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Description

These are the notes for my talk at the Winter school on Derived alge-
braic geometry (see http://www.math.ethz.ch/u/calaqued/DAG-school).
Below the official abstract is given, more information on the contents of my
talk can be found in the introduction on page 2.

Abstract

The étale (∞, 1)-site of derived affine schemes, derived stacks, truncations
and relations with underived stacks. Basic examples:

1. classifying stacks,
2. derived fibered products,
3. derived mapping stacks

References: [HAG-II, §2.2.1, 2.2.2 & 2.2.4].
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Introduction
The goal of this talk (and these notes) is to tie together the homotopy theory
of commutative dg algebras (cdga’s from now on, always concentrated in non-
positive cohomological degree) and the abstract notion of a model topos (or
(∞, 1)-topos in Lurie’s sense) to obtain a good definition of “derived algebraic
geometry” (and show how we can obtain the usual algebraic geometry too).
Hence talks 4–6 (by Claudio Sibilia, Simon Häberli; Georg Oberdieck, Jon Skow-
era and Damien Lejay) are used to get two concrete interpretations of talk 7 (by
David Carchedi). In §1 some of the definitions David has discussed are repeated,
and the way to apply them is explained.
Another important aspect of this talk is to show how this “derived algebraic
geometry” ties in with “classical algebraic geometry”, where classical no longer
means Italian but rather Grothendieckian geometry from the sixties (or rather:
higher geometry, as developed by Carlos Simpson). This is done in §3.
In §4 we give examples of objects in derived algebraic geometry. These examples
will help to motivate the construction of derived algebraic geometry, especially
the case of derived fibered products is worked out in detail in §4.2.
We have tried to give statements in terms of dg algebras whenever possible, but
the first part ties in with the highly abstract formalism of homotopical algebraic
geometry so sometimes things will be expressed in simplicial language.
We also take the model topos point of view: (∞, 1) toposes were covered in
the previous talk, and these notes are mostly in the spirit of the formalism of
Toën–Vezzosi. The reader is encouraged to read Lurie’s approach, and think
about the relationships.

Acknowledgements I would like to thank the organisers (Damien Calaque
and Claudia Scheimbauer) and the mentors (Bertrand Toën, Michel Vaquié and
Gabriele Vezzosi) of the winter school, for creating this wonderful occasion to
talk and learn about derived algebraic geometry. I also wish to thank Mauro
Porta formany interesting discussions on the subject in preparation of this winter
school, and introducing me to the subject in the first place.
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1 Preliminaries on homotopical algebraic geometry

1.1 Homotopical algebra contexts

In this section we quickly review the “local” aspect of homotopical algebraic
geometry. It corresponds to [HAG-II, §1.1] (the development of the notions in
§1.2 of op. cit. is not repeated here, but it can be interesting to read this as a
motivation, especially §1.2.13 op. cit.).
Definition 1. A homotopical algebra context is a triple (C, C0,A) where

1. C (our big category of modules) is a symmetric monoidal model category;

2. C0 (the non-positively graded modules) is a full subcategory of C closed
under weak equivalences;

3. A (the ring-like objects in our setup) is a full subcategory of com Mon(C),
the category of commutative monoids in C;

such that

1. C is proper, pointed, the natural morphisms

(1) Q(X)qQ(Y)→ X qY → R(X)× R(Y)

are weak equivalences and Ho(C) is an additive category;

2. let A be a commutative monoid object in C, then modules over A induce a
combinatorial proper model category which is also a symmetric monoidal
model category;

3. tensoring with a cofibrant object preserves weak equivalences in the mod-
ule categories;

4. comma categories of (non-unital) commutative monoids in C are combi-
natorial proper model categories and base change with a cofibrant object
preserves weak equivalences in the module categories;

5. the category C0 is closed under weak equivalences and homotopy colimits,
while its homotopy category is closed under tensor products;

6. for every A ∈ A we have that the restricted Yoneda embedding

(2) Rh−0 : Ho(A-Modop
0 )→ Ho(A-Modop,∧

0 ) : M 7→ Map(M,−)∗

is fully faithful1.

These additional requirements can be motivated as follows.

1. The model category C is “additive” in some sense: finite homotopy coprod-
ucts are finite homotopy products, Hom-sets in the homotopy category
are abelian groups, . . .

1The codomain is the left Bousfield localisation of the category of simplicial presheaves along
weak equivalences, which yields the category of simplicial prestacks, see [HAG-I, definition 4.1.4].
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2. Module categories are like classical module categories, and the homotopy
category of a module category has a natural symmetric monoidal structure
with RHom and ⊗L

A.

3. Base change behaves nice with respect to cofibrant objects.

4. Another base change property: if B and B′ are commutative A-algebras
over a commutative monoid A in C then

(3) BqL
A B′ → B⊗L

A B′

is an isomorphism in Ho(A-Mod), i.e. the homotopy coproducts are really
given by the monoidal structure, as desired. The non-unital statement is
to make cotangent complexes work.

5. The t-structure defined by C0, which describes the objects that are non-
positively graded, is compatible with the monoidal model structure. Differ-
ent choices of t-structures will yield different notions of formal smoothness,
hence different notions of geometricity of stacks.

6. The non-positively graded objects are homotopically dense, hence each
object in A-Mod is the homotopy limit of non-positively graded objects.

Requirements 1, 2 and 3 are there to make statements easier, in order to avoid too
much (co)fibrant replacements in statements. Requirement 4 relates coproducts
to tensor products. Requirement 5 is a compatibility statement, and requirement
6 says that the non-positively graded objects C0 can see all of C by using homotopy
limits and shifts.
Examples of HA contexts will be given in §2.2, but first we have to introduce
HAG contexts, which are a globalisation of the previous results to obtain a
“homotopical algebraic geometry”.

1.2 Homotopical algebraic geometry contexts

In this section we quickly review the “global” aspect of homotopical algebraic
geometry. It corresponds to [HAG-II, §1.3]. The most important definitions will
be covered in the talk by David Carchedi.
This is [HAG-II, definition 1.3.1.1].
Definition 2. LetM be a model category. A model (pre)topology τ onM is the
datum of a set Covτ(x) for every x ∈ Obj(M) of subsets of objects in Ho(M)/x
which we will call τ-covering families of x, such that

stability for all x ∈ M and for all isomorphisms y→ x in Ho(M) we have

(4) {y→ x} ∈ Covτ(x);

composition if {ui → x}i∈I ∈ Covτ(x), andwehave {ui,j → ui}j∈Ji ∈ Covτ(ui)
for all i ∈ I then the family of compositions

(5)
{

ui,j → x
}

i∈I,j∈Ji
∈ Covτ(x);
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homotopy base change assuming that the stability and composition condition
are satisfied, then for {ui → x}i∈I ∈ Covτ(x) and y → x in Ho(M) we
have

(6)
{

ui ×h
x y→ y

}
i∈I
∈ Covτ(y).

The pair (M, τ) is a model site.
By [HAG-I, proposition 4.3.5] a model (pre)topology τ on the model categoryM
induces a Grothendieck (pre)topology τ on its homotopy category Ho(M).
We will now make a specific choice forM in the following definition, which
will yield the abstract setup for a homotopic algebraic geometry.
Definition 3. A homotopical algebraic geometry context is a quintuple (C, C0,A, τ, P)
such that (C, C0,A) is a homotopical algebra context, τ is a model pretopology
on AffC := com Mon(C)op such that

1. the topology on Ho(AffC) is quasicompact;

2. a finite family (Xi)i∈I in AffC induces a covering (Xi → äL
j∈I Xj)i∈I of the

homotopy coproduct äL
i∈I Xi, i.e. the coproduct of coverings is a covering

of the coproduct;

3. if X∗ → Y is an augmented simplicial object in AffC such that each mor-
phism

(7) Xn → XR∂∆n

∗ ×h
YR∂∆n Y

forms a one-element τ-covering family, then X∗ → Y satisfies the descent
condition [HAG-II, definition 1.2.12.1(2)]2;

and P is a class of morphisms in AffC such that

4. coverings for τ are morphisms in P;

5. morphisms in P are stable by composition, weak equivalences and homo-
topy pullbacks;

2 This technical condition yields a way of checking when a simplicial presheaf F on com Mon(C)
is a stack [HAG-II, corollary 1.3.2.4], namely if and only if

(a) a weak equivalence A ∼→ B in com Mon(C) is sent to a weak equivalence F(A)∗ → F(B)∗
in s Set;

(b) for every family (Ai)i∈I we have that

(8) F

(
h

∏
i∈I

Ai

)
∗
→∏

i∈I
F(Ai)∗

is an isomorphism in Ho(s Set);
(c) for every τ-hypercover Spec B∗ → Spec A in AffC is the induced

(9) F(A)∗ → holim[n]∈∆ F(Bn)∗

an isomorphism in Ho(s Set).
Moreover, it will give us [HAG-II, corollary 1.3.2.5]: themodel pretopology on AffC is subcanonical,

representable presheaves are stacks, we get a fully faithful functor Rh− : Ho(AffC )→ St(C, τ).
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6. being in P is local for the pretopology τ;

7. the natural morphisms X → X qL Y and Y → X qL Y are in P.

Hence we will have to pick elements of the quintuple and see how they yield
(derived) algebraic geometry. Remark that the choice of P (which yields to the
concept of geometricity) is not discussed in detail here, as it will be covered
in later talks. Some words on it later in this text are required though, to make
statements in §3 possible.

1.3 Stacks

We quickly review the abstract definition of a stack with respect to a model site,
as explained in [HAG-II, §1.3.1 and 1.3.2].

1. Consider the category of simplicial presheaves s Pr(AffC), i.e. its objects are
functors Affop

C → s Set, and this category is equipped with its projective
model category structure (i.e. weak equivalences and fibrations are taken
objectwise).

2. Next, consider the category of prestacks Aff∧C , which we obtain as the
left Bousfield localisation of s Pr(AffC) with respect to the class of mor-
phisms {h f | f a weak equivalence} where
(10) h− : AffC → Pr(AffC) ↪→ s Pr(AffC)

is the constant Yoneda embedding. Hence we have enlarged our class of
weak equivalences.
Remark that we have not used our topology yet.

3. Finally, consider the category of stacks Aff∼C,τ on (AffC , τ), obtained as the
left Bousfield localisation of Aff∧C with respect to the homotopy τ-hyper-
covers [HAG-I, definition 4.4.4]3. This is where our topology comes into
play.

This category of stacks Aff∼C,τ is a model topos in the sense of [HAG-I, §3.8], and
we will see it again in §2.3.
By the general machinery of left Bousfield localisations we obtain an adjoint
pair
(11) id : Aff∧C � Aff∼C,τ : id

which gives an adjunction on the homotopy categories
(12) a := L id : Ho(Aff∧C ) � Ho(Aff∼C,τ) : R id =: .

The functor a corresponds to stackification,  is the inclusion of stacks into prestacks.
This allows for the following definition.
Definition 4. A stack on the model site (AffC , τ) is a simplicial presheaf F
on AffC such that its image in Ho(Aff∧C ) is in the essential image of the in-
clusion functor .
The homotopy category of stacks Ho(Aff∼C,τ) will be denoted St(C, τ).

3For more information on this technical aspect, see the MathOverflow question http://
mathoverflow.net/questions/87427, which was answered by David Carchedi, who also attended
the winter school.
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2 The topos of derived stacks
The goal of this section is to make sense of the étale site of derived affine schemes,
and the topos of derived stacks. To a great extent this chapter is just a way
of unraveling the myriads of definitions in [HAG-I; HAG-II], and discuss the
classical notions as given in [SGA41; SGA42; Stacks].

2.1 Reminder on sites

To review the literature on sites and toposes here would be impossible. But we
will discuss some notions that caused some confusion when the work on these
notes started. It concerns small and big sites, a concept which is well known in
classical algebraic geometry, but the terminology seems to be less popular in
derived algebraic geometry and distinguishing them is left to the reader.
Let S be a base scheme. For the étale topology there are two sites: the big étale site
on S and the small étale site on S. Let’s first discuss the latter, because the intuition
is closer to the notion of a topological space.
The small étale site is obtained by putting a Grothendieck topology on the
category of S-schemes which are étale over S, i.e. the structure morphism X → S
itself is required to be étale. Hence this category corresponds to the “open sets”
in the étale topology on S. This moreover implies that any morphism X → Y
over S is étale.
To define the big étale site, one considers the category of all schemes over S
(not just the ones with étale structure morphisms as before). This category is
equippedwith the étale topology by askingmorphisms X → Y over S to be étale,
but it contains more than just the étale open subsets of the base scheme S.

Conclusion We will discuss the big étale site in most of this work. This is
mentioned incorrectly on a preliminary program. Some statements refer to the
small site, and this is indicated.

2.2 The étale site of (derived) affine schemes

To emphasise the geometric view on things, we will first define

(13)
Aff(k) := c Alg(k)op

d Aff(k) := cdg Alg≤0(k)op

and Spec A (resp. Spec A•) is the object corresponding to a commutative k-alge-
bra A (resp. a non-positively graded commutative dg algebra A•). Remark that
we will (ab)use the same notation for the image of Spec A (resp. Spec A•) under
the (model) Yoneda embedding in the category of stacks!
So we wish to consider the model sites (Aff(k), ét) and (d Aff(k), ét). We first
have to make sense of the notation by explaining to which HAG contexts they
correspond.

7



Algebraic geometry To obtain the “classical” notion of higher algebraic geom-
etry we take

(14) (C, C0,A, τ, P) := (k-Mod, k-Mod, c Alg(k), ét, smooth).

The base category C is equipped with the trivial model structure: weak equiv-
alences are isomorphisms, every morphism is a fibration and cofibration. The
étale covering families are taken in their classical sense [Stacks, tag 0215]. This
way (i.e. also incorporating our choice of P) we obtain an interpretation of (Simp-
son’s higher) schemes, algebraic spaces, Deligne–Mumford stacks and Artin
stacks.
Remark that by taking P to be the smooth morphisms we obtain Artin stacks
[Art74], with Deligne–Mumford stacks as a special case [HAG-II, proposition
2.1.2.1]. If we’d restricted ourselves to étale morphisms for P we get Deligne–
Mumford stacks as our main object [DM69].
From this point on we will not use the choice of a class P until we get to §2.4.

Derived algebraic geometry To obtain derived algebraic geometry we take

(15) (C, C0,A, τ, P) := (k-dg Mod, k-dg Mod, cdg Alg≤0(k), ét, smooth)

where étale and smooth have to be interpreted in the correct sense. For complete-
ness’ sake we repeat their reinterpretations [HAG-II, proposition 2.2.2.5 and
theorem 2.2.2.6] but give them as definitions. These reinterpretations explain why
we can take classical algebraic geometry as a special case of derived algebraic
geometry.
Definition 5. Let f : A• → B• be a morphism in cdg Alg≤0(k). We say that

1. f is a Zariski open immersion if

(16) H•(A•)⊗H0(A•) H0(B•)→ H•(B•)

is an isomorphism and H0(A•) → H0(B•) is a Zariski open immersion
(i.e. as morphisms in c Alg(k));

2. f is étale if

(17) H•(A•)⊗H0(A•) H0(B•)→ H•(B•)

is an isomorphism and H0(A•) → H0(B•) is étale (i.e. as morphisms
in c Alg(k));

3. f is smooth if

(18) H•(A•)⊗H0(A•) H0(B•)→ H•(B•)

is an isomorphism and H0(A•) → H0(B•) is smooth (i.e. as morphisms
in c Alg(k));

We then define our étale covering families in the obvious sense.
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Definition 6. Let ( fi : Spec Ai → Spec A)i∈I be a family of morphisms in model
category d Aff(k). We say it is an étale covering family if

1. each A→ Ai is étale (in the derived sense);

2. there exists a finite subset J ⊆ I such that the family ( fi : A → Ai)
in cdg Alg≤0(k) induces a formal covering, i.e. the family of pullback func-
tors (L f ∗i : Ho(A-Mod)→ Ho(Bi-Mod))i∈J is conservative.

By [HAG-II, lemma 2.2.2.13] we canmake the following definition, which (finally)
introduces the main player of these notes.
Definition 7. The étale site of derived affine schemes is the model site (d Aff(k), ét).
Further comparison between underived and derived geometry is delayed until
§3.

2.3 The topos of derived stacks

By the construction outlined in §1.3 we have that d Aff(k)∼ét is a topos.
Definition 8. The topos d Aff(k)∼ét (or its homotopy category) is the topos of
derived stacks, denoted d St(k).
Similarly, we define
Definition 9. The topos Aff(k)∼ét (or its homotopy category) is the topos of (higher)
stacks, denoted St(k).
So if we consider Spec A•, which a priori lives in d Aff, we will consider it (by
abuse of notation) to be in d Aff∼ét, and then RSpec A• is the associated stack,
because the topos of derived stacks is the homotopy category. For the underived
case, we have by the remark after [HAG-II, lemma 2.1.1.1] that (because all the
model structures are trivial anyway)

(19) Spec A ∼= RSpec A

where Spec A is used in both its interpretations.
The following diagram should be in these notes somewhere anyway, so we will
show it here. It displays the situation of classical, higher and derived algebraic
geometry.

(20)

c Alg(k) Set

Grpd

cdg Alg≤0(k) s Set

1

2

3ı

ıπ0

N

4

H0

Π1

The numbers in this diagram correspond to

1. classical scheme theory;
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2. classical stack theory;

3. higher stack theory;

4. derived stack theory.

So summarising the construction of §1.3: derived stacks are simplicial presheaves
on cdg Alg≤0(k) (or rather on its opposite category d Aff(k)), which

1. send quasi-isomorphisms in cdg Alg≤0 to weak equivalences in s Set;

2. satisfy descent with respect to étale hypercoverings (whatever that may
be in explicit terms, just think about Čech covers).

2.4 Geometric stacks

Morally we can say that geometric stacks, with respect to (τ, P) are obtained by
gluing affine schemes along (iterated) equivalence relations in P (or phrased in
another way: the structural morphisms of the groupoid objects). This mimicks
the case ofDeligne–Mumford andArtin (or sometimes algebraic) stacks, inwhich
we glue along étale resp. smooth morphisms. The terminology is unfortunately
not fixed, so we hope no confusion arises.
So, just like in the classical theory of stacks, wewill only be interested in algebraic
stacks. To implement this in the case of derived algebraic geometry, we use [HAG-
II, §2.2.3]. By proposition 2.2.3.2 op. cit. we can say that the smooth morphisms
can be used to define geometricity.
From now on we will assume that the notion of n-geometric derived stack is
known4.
So we can add a third point to the description of derived stacks in §2.3 to describe
geometric stacks:

3. there exists an atlas, i.e. a map f : äL
i∈I RSpec A•i → F (satisfying some

conditions) such that if f is smooth (resp. étale, resp. Zariski) we get a
derived Artin stack (resp. derived Deligne–Mumford stack, resp. derived
scheme), hence we start using the class of morphisms P (see also §2.5).

Moreover, once we have introduced truncation and extension, we will see that
these definitions will agree with the classical definitions of these notions.
If we consider the notion of n-geometric to be known5, we have the following
properties

(21) d StP
τ (k) =

⋃
n≥−1

d Stn,P
τ (k)

and
(22) d St−1,P

τ (k) ∼= Ho(d Aff(k))

which is independent of τ and P as these are exactly the affine schemes: no
gluing has been performed.
In the next section some other choices of geometricity conditions are explained.

4It will be explained in the talk by Mauro Porta.
5It’s not explained in the notes, but it measures how many times we’ve iterated the construction

with a groupoid object. If n is low we get “easier” objects, corresponding to the classical scheme
theory, or algebraic spaces, or Deligne–Mumford stacks, or Artin stacks.
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2.5 What about other topologies?

The only topology that is considered in [HAG-II, §2.2] is the étale topology.
There are nevertheless (a myriad of) others in algebraic geometry. In the study
of algebraic stacks, the other main player is the fppf topology (see e.g. [Stacks,
tag 021L] for definitions).
The geometric derived stacks as discussed up to now have been obtained by
taking the étale topology, and equivalence relations are smooth morphisms.
In the notation of [HAG-II] we have (τ, P) = (ét, smooth). These two notions
generalised to the derived setting in a nice way, and in the next section we will
show some more properties of the étale topos.
On the other hand, to define fppf covers one needs a good notion of finite
presentation. But the finite presentation that one obtains in the category of
cdga’s is stronger than the classical notion, as explained in [HAG-II, §2.2.1]. In
other words, the extension functor does not preserve being of finite presentation.
One has towork around this, by introducing another notion of finite presentation
[Toe11].
Definition 10. Let f : A• → B• be a morphism of k-cdga’s. Then f is of almost
finite presentation if H0( f ) : H0(A•)→ H0(B•) is of finite presentation as a map
between k-algebras.
It is obvious that it is a generalisation of the classical notion. One then constructs
a notion of geometric derived stacks by taking the topology defined by the
faithfully flat morphisms of almost finite presentation (shorthand: fpppf6) and
geometricity is obtained by considering the flat morphisms. Hence we take

(23) (τ, P) = (fpppf,flat).

In the classical case one has Artin’s theorem (see [Art74, theorem 6.1]) compar-
ing (ét, smooth) and (fppf,flat): in the language used in that paper we have
that giving a groupoid in the fppf topology with flat structural morphisms is
equivalent to giving a groupoid in the étale topology with smooth structural
morphisms.
In the derived case Toën has proved that the same is true [Toe11, théorème 2.1],
comparing (ét, smooth) and (fpppf,flat): the functor

(24) d Stn,smooth
ét → d Stn,flat

fpppf

(which is induced by sheafification with respect to the finer fpppf topology) is
an equivalence of categories7 for every n.
Remark 11. Lurie also considers the Nisnevich topology (in spectral algebraic
geometry), which classically is a topology in between Zariski and étale. For more
information, see [DAG-XI]. I am not capable of saying interesting things about
the Nisnevich topology in derived algebraic geometry at the moment.

6Unfortunately this looks rather silly.
7In the spirit of the winter school the equivalence is given relative to a base k containing Q. But

the result is true in its greatest generality by working with simplicial commutative rings.
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3 Truncation and extension

3.1 Definition

We are now ready to define the two main players of this talk: truncation and
extension. We have an adjunction

(25) H0 : d Aff(k) � Aff(k) : ı

where ı is the natural inclusion functor of a commutative k-algebra as a cdga in
degree 0. The pair (H0, ı) is a Quillen adjunction between the two HAG contexts
introduced in the previous section.
Remark that this is the dg version of the adjunction

(26) π0 : d Aff(k) � Aff(k) : ı

where the inclusion functor realises a commutative k-algebra as a discrete sim-
plicial k-algebra.
Because both functors preservesweak equivalences they induce aQuillen adjunc-
tion on the model categories of prestacks (these categories being defined by the
left Bousfield localisation along the Yoneda embedding of weak equivalences),
i.e. we get

(27) ı! : s Pr(Aff(k)) � d Aff(k)∧ : ı∗ .

Because the inclusion ı is continuous [HAG-I, §4.8] we obtain that

(28) Rı∗ : Ho(s Pr(d Aff(k)))→ Ho(s Pr(Aff(k)))

preserves the subcategories of stacks. Hence by the properties of left Bousfield
localisations we obtain a Quillen adjunction

(29) ı! : Aff(k)∼ét � d Aff(k)∼ét : ı∗

on the model categories of stacks, which in turn induces a derived adjunction

(30) Lı! : St(k) � d St(k) : Rı∗

on the homotopy categories of stacks. This relation allows us to define the
functors that will relate underived stacks to derived stacks, and vice versa.
Definition 12. We define the truncation functor t0 to be

(31) t0 := Rı∗ : d St(k)→ St(k).

We define8 the extension functor ı to be

(32) ı := Lı! : St(k)→ d St(k).

Definition 13. Let F be a derived stack. Then F is said to be truncated if the
counit ı ◦ t0(F )→ F of the adjunction (29) is an isomorphism in d St(k).

8By some abuse of notation which should probably be avoided. . .
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We will see in later talks lots of examples where the relationship between under-
ived and derived stacks will be important. The following definition seems to be
appropriate in this light.
Definition 14. Let F be a (underived) stack. A derived enhancement of F is a
derived stack F̃ together with an isomorphism t0(F̃ ) ∼= F .
Hence it is a derived stack, whose shadow is the original stack. There is the obvi-
ous choice of ı(F ), but in general this won’t be the “best” derived enhancement.
The question as to which of the different choices is the “best” has no clear-cut
answer, it depends on the type of application one has in mind.
Some examples of derived enhancements9:

1. derived fiber products, as explained in §4.2;

2. derived moduli stacks (relating to the hidden smoothness principle of
Kontsevich);

3. the stack of the derived category of complexes of quasicoherent sheaves
on a derived Artin stack yields a derived enhancement of the stack of
complexes on its truncation, modifying the derived categorywhile keeping
its heart unchanged;

4. the virtual structure sheaf on a truncation;

5. inertia stacks;

6. linear derived stacks;

7. derived mapping stacks, as hinted to in §4.3;

8. moduli stacks of objects in a dg category [TV07];

9. . . .

3.2 Properties

Functorial properties We first discuss some of the functorial properties of
extension and truncation.
The following is [HAG-II, lemma 2.2.4.1].
Lemma 15. The extension functor ı is fully faithful.

Proof. Wewish to show that for an underived stack F the unit of the adjunction

(33) F → t0 ◦ ı(F )

is an isomorphism. Homotopy colimits are computed in the model category
of simplicial presheaves, hence they are computed levelwise, and therefore t0
commutes with homotopy colimits. The functor ı commutes also with homotopy
colimits, because it is the derived functor of a left Quillen functor.
Any stack F is the homotopy colimit of affine schemes, hence it suffices to
take F = Spec A for a k-algebra A.

9If no reference is given, one is referred to [Toe06].
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We have ı(Spec A) ∼= RSpec A. Moreover we have that the simplicial set of B-val-
ued points (for B a k-algebra) of RSpec A admits the following identifications

(34)

(RSpec A(B)) ∼= Mapcdg Alg≤0(k)(A, B)∗
∼= HomAlg(k)(A, B)
∼= (Spec A)(B)

because A and B have their cohomology concentrated in degree 0. Hence the
adjunction morphism

(35) Spec A→ t0 ◦ ı(Spec A)

is an isomorphism, and the extension functor is fully faithful.

The following is [HAG-II, lemma 2.2.4.2].
Lemma 16. The functor ı∗ in the adjunction (29) is both left and right Quillen,
hence it preserves equivalences.

Proof. It has the right adjoint H0,∗ : Aff(k)∼ét → d Aff(k)∼ét, obtained by pulling
back truncation of cdga’s. By [HAG-II, lemma 1.3.2.3(2)] it is right Quillen,
hence ı∗ is left Quillen. That it is also right Quillen follows from (29).

These two lemmas yield the following (important) properties of truncation and
extension.
Corollary 17. The truncation functor t0 (being left and right Quillen) commutes
with homotopy limits and homotopy colimits.
Corollary 18. The extension functor ı (being left Quillen) commutes with homo-
topy colimits and is fully faithful.
Remark 19. The extension functor ı does not commute with homotopy limits!
The reason for this is that ı : c Alg(k)→ cdg Alg≤0(k) does not preserve homo-
topy pushouts: computing the tensor product of algebras and then extending
gives a truncated result, while computing the derived tensor product (or derived
fibered product) gives in general a non-truncated result, i.e.

(36) ı(A⊗k B) 6= ı(A)⊗L
k ı(B).

But this is sort of the point of the whole machinery, as will be explained in §4.2.
See also [DAG-V, warning 4.1.16].

Geometric properties Now we discuss some of the geometric properties of
extension and truncation.
The following is [HAG-II, lemma 2.2.2.9]. It yields that a derived stack and
its truncation have the same topology (as derived stacks, for now). See also
proposition 31.
Corollary 20. Let A• be a commutative dg k-algebra, and let

(37) ı(Spec H0(A•))→ Spec A•

14



be the natural morphism. Then the base change functor10

(38) Ho(d Aff(k)/ Spec A•)→ Ho(d Aff(k)/ ı(Spec H0(A•)))

induces an equivalence between the full subcategories of étale morphisms (i.e.
of the small étale sites!).
The following is [HAG-II, lemma 2.2.2.10]. It specialises the previous corollary.
Corollary 21. The base change functor from the previous corollary induces an
equivalence between the full subcategories of Zariski open immersions.
Remark 22. Using [DAG-V, remark 4.3.4] we obtain that we can even consider
the usual small étale site in (38). If we have that A• is concentrated in degree 0
(or in simplicial terms: it is discrete), and A• → B• is an étale morphism (in the
derived sense, i.e. a so called strongly étale morphism, which we took as our
definition by virtue of [HAG-II, theorem 2.2.2.6]), we obtain that

(39) H•(A•)⊗H0(A•) H0(B) ∼= H0(A•)⊗H0(A•) H0(B•) ∼= H•(B•)

hence H•(B•) is also concentrated in degree 0. Hence

The étale topology is the same in derived and underived algebraic
geometry.

or similarly

The small étale site of derived affine schemes on a derived affine
scheme is the same as the small étale site on the truncation of a
derived affine scheme.

Remark 23. We have another pleasing way of phrasing the relationship. Let A•

be a commutative k-algebra. We have

(40) t0(RSpec A•) ∼= Spec H0(A•).

Remark 24. The extension functor ı is characterised by the isomorphism

(41) ı(Spec A) ∼= RSpec A

for A a k-algebra, and the fact that it commutes with homotopy colimits.

More functorial and geometric properties The following are properties that
should rather be covered in the talk by Mauro Porta.
The following is [HAG-II, proposition 2.2.4.4(1–2)].
Proposition 25. The functor truncation functor t0

1. preserves epimorphisms;

2. sends n-geometric derived stacks to n-geometric stacks;

3. sends flat (resp. smooth, étale) morphisms between derived stacks to flat
(resp. smooth, étale) morphisms between stacks.

10Minor abuse of notation: ı in the next equation doesn’t live on the level of homotopy categories,
it’s the underived version.
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The following is [HAG-II, proposition 2.2.4.4(3)].
Proposition 26. The functor extension functor ı

1. preserves homotopy pullbacks of n-geometric stacks along flat morphims;

2. sends n-geometric stacks to n-geometric derived stacks;

3. sends flat (resp. smooth, étale) morphisms between n-geometric stacks to
flat (resp. smooth, étale) morphisms between n-geometric derived stacks.

The following is [HAG-II, proposition 2.2.4.4(4)].
Proposition 27. Let F be an n-geometric stack (i.e. underived). Let F ′ → ı(F )
be a flat morphism of n-geometric derived stacks. Then F ′ is truncated.
Corollary 28. Let F ′ be as in the previous proposition. Then F ′ is the image of
an n-geometric stack under the extension functor ı.
The following is [HAG-II, proposition 2.2.4.5].
Corollary 29. Let F be an Artin n-stack. Then the derived stack ı(F ) has an
obstruction theory.
The following is [HAG-II, proposition 2.2.4.6].
Corollary 30. Let F be an n-geometric derived stack. For every commutative
dg algebra A• such that Hi(A•) = 0 for i < −k we have that RF (A•) is
an (n + k + 1)-truncated simplicial set.
The following is [HAG-II, proposition 2.2.4.7]. It is a manifestation of the mantra
that derived algebraic geometry is about “nilpotents on steroids” (see also §4.2,
also for the source of this phrase).
Proposition 31. LetF be an n-geometric derived stack. The counit ı ◦ t0(F )→ F
of the adjunction ı a t0 is a representable morphism.
For all A• ∈ cdg Alg≤0(k) and for every flat morphism RSpec A• → F we have
that the commutative square

(42)
RSpec H0(A•) RSpec A•

ı ◦ t0(F ) F

is homotopy cartesian. This implies that the counit ı ◦ t0(F )→ F of the adjunc-
tion is a closed immersion.
Remark 32.Hence the inclusion ı ◦ t0(F )→ F is a “formal thickening” of the
truncated Artin n-stack.

4 Basic examples

4.1 Classifying stacks

This type of examples will be covered in the talk by Giorgia Fortuna.
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4.2 Derived fibered products

For ease of statement wewill assume that things have complementary dimension
whenever this could be required, and we will work over C.
The goal of intersection theory is to make sense of intersecting subvarieties on a
variety, and describe what’s going on. In this section we will show how derived
algebraic geometry provides the natural place to do intersection theory, by grad-
ually building up the complexity of our (counter)examples to show the deficits
in more down-to-earth approaches. Already the case of counting 0-dimensional
intersections proves to be interesting, hence we will restrict ourselves to com-
plementary dimension here. Intersection theory is a vastly more rich subject
though.

Intersection as sets The first way of making sense of an intersection theory
is to naively count the points in an intersection. E.g. consider two conics in P2

intersection transversely, as indicated in figure 1. Thenwe can say the intersection
multiplicity is 4, as predicted by Bézout’s theorem.

Figure 1: Transverse intersection a conic and a line in P2

But as Bézout’s theorem already indicates: points should be counted with their
multiplicity11. Observe that in this example the multiplicities are all 1, so things
work out.
Example 33. Consider the (non-transverse) intersection of a conic with a line
in P2, as indicated in figure 2.

Figure 2: Transverse intersection of two conics in P2

The set-theoretic intersection is a single point, but if we move the line a bit away
from being a tangent line12 we see two intersection points13 Bézout’s theorem
accounts for this discrepancy by saying that the intersection has multiplicity 2.

11Remark that the chronology of statements in this section makes little sense as we already used a
result which uses multiplicities, but we try to motivate things by going from the nicest possible case
to the worst possible case, not by giving a historical overview of the development of the subject.

12Hence we get the notion of a moving lemma in intersection theory to make sense of this.
13If you move in the wrong direction the intersections become imaginary, and you’ll get two

intersection points too.
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Intersection as schemes Bézout’s theorem is an incarnation of intersecting
varieties as schemes: we incorporate the non-reduced structure. Then it becomes a
matter of counting lengths of modules, and things work out again. Hence we
can take the intersection multiplicity in the point x ∈ X to be given by

(43) `OX,x (OX,x/p⊗OX,x/q) = `OX,x (OX,x/(p+ q))

where p and q are the ideals corresponding to the subvarieties we are intersecting.
Unfortunately this doesn’t suffice as the next classical example (e.g. [GTM52,
Example A.1.1.1]) shows.
Example 34. Consider X = A4 = Spec C[x1, x2, x3, x4]. Let S ∼= A2 ⊂ A4 be
defined by

(44) p = (x1 − x3, x2 − x4).

Let T ⊂ A4 be given by

(45) q = (x1, x2) ∩ (x3, x4) = (x1x3, x1x4, x2x3, x2x4).

This is the union of two planes intersecting in the origin, hence it is singular and
has two non-singular irreducible components14.
There are two ways of computing the intersection multiplicity of S and T in the
origin:

with multiplicities by (43) we are led to consider

(46) dimC

(
C[x1, x2]/(x2

1, x1x2, x2
2)
)
= 3;

componentwise there are two irreducible components in T, each of which inter-
sects S in exactly 1 point with multiplicity 1, hence we get an intersection
multiplicity of 2.

Hence we observe that somehowwe overcounted things in the first case, because
we certainly want intersection multiplicity to be additive, which is used in the
second case.
Remark 35. As indicated in remark 19 and explained for instance in [DAG-V,
warning 4.1.16], we have that computing the fiber product in the non-derived
sense and then extending it to the derived world yields the truncated part of the
derived fiber product. Hence

(47) A⊗k B ∼= H0(ı(A)⊗L
ı(k) ı(B)).

If flatness comes into play (as will be explained in the next section) we will get
that the strong versions of étale, smooth, etc. behave the way we want. This can
be seen in the exposition of [Toe11, §1.2] (but is of course subsumed in [HAG-II]).

14This example prevents us from making nice pictures, the reader is encouraged to make up a
mental picture herself. The reason for this not-so-intuitive example is that we are looking for a
non-Cohen-Macaulay ring, which a not-so-geometric condition.
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Intersection as derived schemes The solution to this is Serre’s Tor-formula
[LNM11, §V.3]. We observe that the tensor product in (43) is not necessarily
exact, hence not always well-behaved. This accounts for the discrepancy in the
previous example, which is solved by using

(48)
+∞

∑
i=0

(−1)i `OX,x

(
TorOX,x

i (OX,x/p,OX,x/q)
)

in place of (43). In [LNM11] it is then shown that in many interesting cases this
formula really gives the correct answer.
The role of derived algebraic geometry is now not to give the correct answer
(because we have it) but to explain why it is the correct answer. As remarked
in remark 19 we have that fibered products don’t commute with the extension
functor ı.
By computing the derived fibered product of two non-derived schemes we nev-
ertheless obtain the correct geometric object describing the intersection. The
first step we took was considering nilpotents by considering arbitrary schemes,
which helped in some of the cases. Now we are considering “nilpotents on
steroids” (courtesy of Timo Schürg at http://mathoverflow.net/a/15697/
6263), to avoid problems if the usual nilpotents don’t encode enough as in
the previous example. And the object we’ve obtained is a truly geometric object,
whilst Serre’s Tor formula is only a way of computing a number. Now we can
see that his Tor formula belongs to the realm of derived algebraic geometry.
See also proposition 31 and corollary 20 for the relationship between the un-
derived and the derived situation. In particular we have realized the scheme-
theoretic intersection as the truncated part of the derived-scheme-theoretic
intersection, as indicated in (36) and remark 35.
Remark 36. There are other interesting ways to motivate derived algebraic ge-
ometry from the point of view of intersection theory [DAG-V, Introduction].

4.3 Derived mapping stacks

This section is not finished. It is a rough and incomplete sketch of what could be
said about derived mapping stacks, but these will be covered in a better way by
other people.
The category d St(k) has internal Homs. Hence we obtain the following adjunc-
tion

(49) HomHo(d St(k))(F, RMap(G, H)) ∼= HomHo(d St(k))(F×L G, H)

where ×L denotes the derived fiber product.
This is analogous to the existence of internal Homs for underived (higher) stacks.
These stacks are called derived mapping stacks. In the underived case they are
also called Hom stacks, and we will denote them Hom in this text. Hence if
one wishes to look for properties of mapping stacks in the underived sense, use
those keywords.
Remark 37. Just like the case where the extension functor ı does not preserve
homotopy limits, the internal Homs are not preserved by ı. This means that
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1. looking at a tangent space in the derived sense

2. taking a fiber product in the derived sense

really gives new information, that was previously unavailable.
In the case of derived mapping stacks we do get the following relation between
the derived and underived cases

(50) t0(RMap(F, G)) ∼= Hom(t0(F), t0(G)).

Derived mapping stacks have many applications:

1. loop spaces

2. higher order derived tangent stacks, extending the cotangent complex, by
considering RMapd St(k)(Di, X) where Di = RSpec k[εi] are the dual
numbers with εi living in degree −i;

3. derived algebraic de Rham cohomology, derived Dolbeault cohomology,
derived non-abelian Hodge theory, . . .
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