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Abstract

On page 10 in Leonid Positselski’s manuscript Contraherent cosheaves [2]
one reads

[. . . ] the restriction of a homotopy-injective complex of quasico-
herent sheaves to such a subscheme may no longer be homotopy-
injective.

In a mail to the author from October 1, 2014 Leonid Positselski explained the
construction of an example, which goes along the lines of Amnon Neeman’s [1,
example 6.5]. This note is written in order to put it in LATEX and flesh out some
details, and is made public with the permission of Leonid Positselski.

1 Introduction

Acknowledgements All mathematical ideas here are due to Leonid Positselski and
Amnon Neeman, and I would like to thank the first for outlining the example in an
email and allowing me to make this public. All mistakes are due to the author.

2 The example

Situation The setup is as in [1, example 6.5] and the notation is chosen to reflect
the construction there (to some extent). The main difference is that we compute
the functor f ! = RHomS(R,−) via a homotopy-injective resolution in the second
variable, whereas in the article a projective resolution of the first variable is used.
But to get to the conclusion we again reduce to the fact that i∗ ◦ f ! 6= g ! ◦ j∗ on the
unbounded level, as in the example of loc. cit.

Let R be any sufficiently general commutative noetherian ring (e.g. Z or k[x] would
do). Let r ∈ R be a non-invertible and non-nilpotent element. Then we set

(1)

S := R[ε]/(ε2),

A := R[r−1],

B := S[r−1] = R[r−1,ε]/(ε2).
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The geometric picture corresponding to this choice of rings is

(2)

U := Spec A X := Spec R

V := Spec B Y := Spec S

◦i

/

g

/

f

◦
j

where f and g are proper morphisms of finite type, whilst i and j are open immer-
sions. Remark that the non-reducedness of the rings doesn’t play an essential role
(as far as I can tell): we are looking for the easiest proper morphism available, hence
we use a proper affine morphism, but these are necessarily finite.

Because f (resp. g) are affine we have already on the underived level an adjunc-
tion f∗ a f ! (resp. g∗ a g !), which reduces to the adjunction

(3) HomS(M , N)∼= HomR(M ,HomS(R, N))

for M an R-module and N an S-module, with f∗ the transport of structure along f
and f ! = HomS(R,−). If go to the derived setting we get (together with a possible
confusing notation: usually f ! is unambiguously on the derived level but in this
case there is already an underived incarnation which we denote in the same way)
that f ! = RHomS(R,−) as hinted before (likewise for g).

Construction of a homotopy-injective complex on Y We first construct the
homotopy-injective complex whose restriction will no longer be homotopy-injective.

We will denote by

(4) C•S := · · ·
0
→ S

0
→ S

0
→ ·· ·

a complex on Y . This is not yet homotopy-injective, as homotopy-injective implies
degreewise injective (and S is not self-injective).

Pick any injective resolution I•S of S as a module over itself.

Now set

(5) J•S :=
∏

n∈Z
Σn I•S .

This is a homotopy-injective complex because Σn I•S as a bounded below complex
of injectives is homotopy-injective and infinite products of homotopy-injective com-
plexes are homotopy-injective. The complex J•S is quasi-isomorphic to C•S via the
obvious morphism (i.e. the product of the injective augmentation maps).

Remark 1. The complex
⊕

n∈ZΣ
n I•S is also quasi-isomorphic to C•S , but it is not

necessarily homotopy-injective: the Hom-functor commutes with limits in the second
variable, not colimits. However, as in [1, example 6.5] we use this complex to show
that j∗ commutes with the particular infinite product that we are using here.

Restriction of the homotopy-injective complex on Y to V The restriction of J•S
to V is given by j∗(J•S ) = J•S [r

−1]. It is our goal to show that this complex is not
homotopy-injective.
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Construction of a homotopy-injective complex on V We then construct a homo-
topy-injective complex on the open subset V in order to compare it to the restriction
of the homotopy-injective complex. The construction goes along the same lines as
the construction of the first homotopy-injective complex.

We will denote by

(6) C•B := · · ·
0
→ B

0
→ B

0
→ ·· ·

a complex on V . This is not yet homotopy-injective, as homotopy-injective implies
degreewise injective (and B is not self-injective).

Consider the complex I•B := I•S[r
−1], as we are in the noetherian setting this is an

injective (and not just flasque) resolution of B.

Now set

(7) J•B :=
∏

n∈Z
Σn I•B =

∏

n∈Z
Σn I•S[r

−1].

This is a homotopy-injective complex because Σn I•B as a bounded below complex
of injectives is homotopy-injective and infinite products of homotopy-injective com-
plexes are homotopy-injective. The complex J•B is quasi-isomorphic to C•B via the
obvious morphism (i.e. the product of the injective augmentation maps).

Comparison of the complexes on V : quasi-isomorphism We have the obvious
morphism

(8) J•S [r
−1] =

�

∏

n∈Z
Σn I•S

�

[r−1]→ J•B =
∏

n∈Z
Σn I•S[r

−1]

which is not an isomorphism because localisation does not preserve infinite products
(the same argument is used in [1, example 6.5], all the terms contribute to the same
degree whereas in remark 1 we split things in all degrees).

It is nevertheless a quasi-isomorphism, because localisation and the direct product
are exact functors (for the direct product it is important that we are working affine).

Computing f !(I•S) The argument requires knowledge about f !(I•S), just as in [1,
example 6.5]. This reduces to knowing f !(S), and hence

(9) f !(S) = RHomS(R, S) =
∏

m≥0

Σ−mR

as in loc. cit.

Comparison of the complexes on V : applying a left exact functor We wish to
show that J•S [r

−1] is not homotopy-injective. We do this by applying a left exact
functor F to Mod/B, which defines a right derived functor RF on D(Mod/B) by
applying F degreewise to a homotopy-injective resolution. The answer should be the
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same for each homotopy-injective resolution, hence if J•S [r
−1] were to be homotopy-

injective the result should be the same as for J•B, these complexes being quasi-
isomorphic, and J•B homotopy-injective by construction.

Consider the functor g ! : Mod/B→Mod/A, which is already defined on the under-
ived level, and left exact as discussed before. It corresponds to taking the maximal
submodule that is annihilated by the action of ε.

We then compute, as in [1, example 6.5]

(10)

g !(J•B) = g !

�

∏

n∈Z
Σn I•S[r

−1]

�

=
∏

n∈Z
Σn g !(I•S[r

−1])

=
∏

n∈Z
Σn f !(I•S)[r

−1]

=
∏

n∈Z
Σn

�

∏

m≥0

Σ−mR

�

[r−1]

where the first step is just unwinding the definition, the second is because g ! as a
right adjoint commutes with products, and the third step is an application of the
base-change formula for bounded below complexes (with a forgetful functor thrown
in, or one applies the argument of loc. cit. using remark 1) and the last step is filling
in the computation of f !(I•S).

In cohomology this gives, going straight for H0

(11) H0
�

g !(J•B)
�

=
∏

n∈Z
R[r−1].

On the other hand we have

(12)

g !(J•S [r
−1]) = g ! ◦ j∗(J•S )

= i∗ ◦ f !(J•S )

= f !(J•S )[r
−1]

= f !

�

∏

n∈Z
Σn I•S

�

[r−1]

=

�

∏

n∈Z
Σn f !(I•S)

�

[r−1]

=

�

∏

n∈Z
Σn
∏

m≥0

Σ−mR

�

[r−1]

where the first step is just unwinding the definition, the second step is the base
change formula which we can apply because we are computing things termwise (in
other words: g ! (underived) commutes with localisation), and then we proceed as
before.

In cohomology this gives

(13) H0
�

g !(J•S [r
−1]
�

=

�

∏

m≥0

R

�

[r−1]
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Conclusion By the choice of r and the argument as in [1, example 6.5] we have
that the restriction J•S [r

−1] cannot be homotopy-injective, as the cohomology of the
complexes differs.
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