Positselski's main lemma: a criterion for shifted vector bundles in $\mathbf{D}^{b}(\operatorname{coh}/X)$

Pieter Belmans

September 27, 2014

Abstract

We redo the proof of the main lemma in [2]. It says that, if for an object $\mathcal{E}^{\bullet} \in \mathbf{D}^{b}(\operatorname{coh}/X)$ we have $\mathbb{R}\mathcal{H}\operatorname{com}^{\bullet}(\mathcal{E}^{\bullet}, \mathcal{E}^{\bullet}) \in \mathbf{D}^{b}(\operatorname{coh}/X)^{\leq 0}$, then \mathcal{E}^{\bullet} is the shift of a vector bundle.

The proof is completely the same, just spelled out with a little more details.

Standing assumptions Let *k* be a field. Let *X* be a smooth projective variety.

The following criterion is a way to check that a coherent sheaf is actually a vector bundle: if you dualise it (in the derived category) and it remains pure in degree 0 it must be a vector bundle.

Lemma 1. Let \mathcal{E} be an object in coh/X, or equivalently a pure sheaf concentrated in degree 0 (i.e. as an object of $\mathbf{D}^{\mathrm{b}}(\mathrm{coh}/X)$). If $\mathbf{R}\mathcal{H}\mathrm{om}^{\bullet}(\mathcal{E},\mathcal{O}_X)$ is a pure sheaf concentrated in degree 0, then \mathcal{E} is a vector bundle.

Proof. Take a locally free resolution

(1) $0 \to \mathcal{P}_k \to \ldots \to \mathcal{P}_0 \to 0$

of \mathcal{E} . If \mathcal{E} is not already a vector bundle, we see that the morphism

(2) $\operatorname{Hom}(\mathcal{P}_{k-1}, \mathcal{O}_X) \to \operatorname{Hom}(\mathcal{P}_k, \mathcal{O}_X)$

is a surjection, as $\mathcal{E}xt^k(\mathcal{E}, \mathcal{O}_X) = 0$ for $k \ge 1$ by the assumption. To see this, remark that the cohomology of $\mathbb{R}\mathcal{H}om^{\bullet}(\mathcal{E}^{\bullet}, \mathcal{O}_X)$ is computed from the cohomology of the cochain complex

(3) $0 \to \operatorname{Hom}(\mathcal{P}_0, \mathcal{O}_X) \to \ldots \to \operatorname{Hom}(\mathcal{P}_k, \mathcal{O}_X) \to 0.$

Hence the condition on $\mathbb{RHom}^{\bullet}(\mathcal{E}, \mathcal{O}_X)$ gives us that there shouldn't be cohomology in this particular degree.

Therefore *locally* the inclusion $\mathcal{P}_k \to \mathcal{P}_{k-1}$ is split (as we can construct the splitting from the surjection on the dual vector bundles locally), and the quotient $\mathcal{P}_{k-1}/\mathcal{P}_k$ is again a vector bundle. But then we can replace our locally free resolution by a shorter one, hence \mathcal{E} must be a vector bundle. \Box

The following criterion is a way to check disjointness of supports of cohomology sheaves of two objects in the bounded derived category, based on where their derived tensor product lives in the t-structure.

Lemma 2. Let \mathcal{E}^{\bullet} and \mathcal{F}^{\bullet} be objects in $\mathbf{D}^{b}(\operatorname{coh}/X)$. If $\mathcal{E}^{\bullet} \otimes^{\mathbf{L}} \mathcal{F}^{\bullet}$ is in $\mathbf{D}^{b}(\operatorname{coh}/X)^{\leq 0}$ then for all $i + j \geq 0$ we have

(4) supp $\mathcal{H}^{i}(\mathcal{E}^{\bullet}) \cap$ supp $\mathcal{H}^{j}(\mathcal{F}^{\bullet}) = \emptyset$.

Proof. Consider the Künneth spectral sequence

(5)
$$E_2^{p,q} = \bigoplus_{i+j=q} \operatorname{Tor}_{-p} \left(\mathcal{H}^i(\mathcal{E}^{\bullet}), \mathcal{H}^j(\mathcal{F}^{\bullet}) \right) \Rightarrow \mathcal{H}^{p+q}(\mathcal{E}^{\bullet} \otimes^{\mathbf{L}} \mathcal{F}^{\bullet}) = E_{\infty}^{p,q}.$$

We apply a descending induction on i + j, as for $i + j \gg 0$ the statement is true. Assume that for some $i + j \ge 0$ the intersection of the supports of the cohomology sheaves is nonempty. Then $\mathcal{H}^i(\mathcal{E}^\bullet) \otimes \mathcal{H}^j(\mathcal{F}^\bullet) \neq 0$ (as a sheaf: just consider its stalks, then sheafify). This implies $E_2^{0,q} \neq 0$.

To make sure that the term $E_2^{0,q}$ does not contribute a nonzero cohomology sheaf to $\mathcal{E}^{\bullet} \otimes^{\mathbf{L}} \mathcal{F}^{\bullet}$ (as by assumption $\mathcal{E}^{\bullet} \otimes^{\mathbf{L}} \mathcal{F}^{\bullet} \in \mathbf{D}^{\mathrm{b}}(\mathrm{coh}/X)^{\leq 0}$) [TODO: but what if we take q = 0?] this term must be killed by some $E_2^{-r,q+r-1}$, for $r \geq 2$ (as we are already at this step in the convergence, and $E_2^{0,q}$ gets killed if we find an isomorphism with another term at some point, as $E_r^{0,q}$ sits at the edge of the nonzero terms in the spectral sequence). But such a term consists of summands for which $i' + j' = q + r - 1 \geq q + 1 > i + j$, hence the induction hypothesis applies, so the intersection of these supports is empty and we have no Tor: a contradiction. \Box

The following proposition is "Positselski's main lemma", which is a criterion to check whether an object in the bounded derived category is actually a vector bundle (up to a shift).

Proposition 3 (Main lemma). Let \mathcal{E}^{\bullet} be an object in $\mathbf{D}^{b}(\operatorname{coh}/X)$. If $\mathbb{R}\mathcal{H}om^{\bullet}(\mathcal{E}^{\bullet}, \mathcal{E}^{\bullet})$ is in $\mathbf{D}^{b}(\operatorname{coh}/X)^{\leq 0}$ then \mathcal{E}^{\bullet} is (up to a shift) a vector bundle.

Proof. Denote $\mathcal{F}^{\bullet} := \mathbf{R}\mathcal{H}om^{\bullet}(\mathcal{E}^{\bullet}, \mathcal{O}_X)$. Then the tensor-Hom adjunction reads

(6) **R** \mathcal{H} om[•]($\mathcal{E}^{\bullet}, \mathcal{E}^{\bullet}$) $\cong \mathcal{E}^{\bullet} \otimes^{\mathrm{L}} \mathcal{F}^{\bullet}$.

We can freely shift \mathcal{E}^{\bullet} around, so assume $\mathcal{E}^{\bullet} \in \mathbf{D}^{b}(\operatorname{coh}/X)^{\leq 0}$ and $\mathcal{H}^{0}(\mathcal{E}^{\bullet}) \neq 0$. Then $\mathcal{F} \in \mathbf{D}^{b}(\operatorname{coh}/X)^{\geq 0}$, and $\mathcal{H}^{0}(\mathcal{F}^{\bullet}) = \mathcal{H}om(\mathcal{H}^{0}(\mathcal{E}^{\bullet}), \mathcal{O}_{X})$.

With this notation we see that $\mathcal{E}^{\bullet} \otimes^{\mathbf{L}} \mathcal{F}^{\bullet} \in \mathbf{D}^{\mathbf{b}}(\operatorname{coh}/X)^{\leq 0}$, hence we can apply lemma 2 to i = 0 and $j \geq 1$ (whenever we have a collection of cohomology sheaves we consider the union of their supports) and obtain that

(7) $\operatorname{supp} \mathcal{H}^0(\mathcal{E}^{\bullet}) \cap \operatorname{supp} \mathcal{H}^{\geq 1}(\mathcal{F}^{\bullet}) = \emptyset.$

We wish to show that supp $\mathcal{H}^{0}(\mathcal{E}^{\bullet}) = X$, because this implies $\mathcal{H}^{\geq 1}(\mathcal{F}^{\bullet}) = 0$, hence \mathcal{F}^{\bullet} is actually concentrated in degree 0.

We can assume that *X* is irreducible (i.e. connected, as *X* is a smooth variety), otherwise we work component per component. So assume that supp $\mathcal{H}^0(\mathcal{E}^{\bullet}) \subsetneq X$, then $\mathcal{H}^0(\mathcal{F}^{\bullet}) = \mathcal{H}om(\mathcal{H}^0(\mathcal{E}^{\bullet}), \mathcal{O}_X) = 0$. To see this it suffices to realise that, using the

description of the stalk at the generic point (see [EGA III₁, proposition 12.3.5]) that it is a torsion sheaf (using [EGA I, proposition 7.4.6]), but that it is also torsion-free (using [1, corollary 1.2 and proposition 1.3]).

But then $\mathcal{F}^{\bullet}|_{X\setminus \text{supp }\mathcal{H}^{\geq 1}(\mathcal{F}^{\bullet})}$ is acyclic, whereas $\mathcal{E}^{\bullet}|_{X\setminus \text{supp }\mathcal{H}^{\geq 1}(\mathcal{F}^{\bullet})}$ is not acyclic. This is impossible, because $\mathbb{R}\mathcal{H}\text{om}^{\bullet}$ is of a local nature, so we get $\text{supp }\mathcal{H}^{0}(\mathcal{E}^{\bullet}) = X$, and $\mathcal{H}^{\geq 1}(\mathcal{F}^{\bullet}) = 0$, and $\mathcal{F} \in \text{coh}/X$.

Dualising \mathcal{F} yields $\mathcal{E}^{\bullet} \cong \mathbf{R}\mathcal{H}om^{\bullet}(\mathcal{F}, \mathcal{O}_X) \in \mathbf{D}^{\mathrm{b}}(\operatorname{coh}/X)^{\geq 0}$, therefore the t-structure implies $\mathcal{E} \in \operatorname{coh}/X$ too, and we can apply lemma 1 to conclude that \mathcal{E} is a vector bundle.

References

- [EGA I] Jean Dieudonné and Alexander Grothendieck. Éléments de géométrie algébrique: I. Le langage des schémas. French. 4. Publications Mathématiques de l'IHÉS, 1960, pp. 5–228.
- [EGA III₁] Jean Dieudonné and Alexander Grothendieck. Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie. French. 11. Publications Mathématiques de l'IHÉS, 1961, pp. 5– 167.
 - [1] Robin Hartshorne. "Stable reflexive sheaves". In: *Mathematische Annalen* 254 (1980), pp. 121–176.
 - [2] Leonid Positselski. "All strictly exceptional collections in D^b_{coh}(ℙ^m) consist of vector bundles". In: (), pp. 1–6. arXiv: alg-geom/9507014v2 [math.AG].